Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 68(22): 9532-40, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19010930

RESUMO

A single cancer cell contains large numbers of genetic alterations that in combination create the malignant phenotype. However, whether amplified and mutated genes form functional and physical interaction networks that could explain the selection for cells with combined alterations is unknown. To investigate this issue, we characterized copy number alterations in 191 breast tumors using dense single nucleotide polymorphism arrays and identified 1,747 genes with copy number gain organized into 30 amplicons. Amplicons were distributed unequally throughout the genome. Each amplicon had distinct enrichment pattern in pathways, networks, and molecular functions, but genes within individual amplicons did not form coherent functional units. Genes in amplicons included all major tumorigenic pathways and were highly enriched in breast cancer-causative genes. In contrast, 1,188 genes with somatic mutations in breast cancer were distributed randomly over the genome, did not represent a functionally cohesive gene set, and were relatively less enriched in breast cancer marker genes. Mutated and gained genes did not show statistically significant overlap but were highly synergistic in populating key tumorigenic pathways including transforming growth factor beta, WNT, fibroblast growth factor, and PIP3 signaling. In general, mutated genes were more frequently upstream of gained genes in transcription regulation signaling than vice versa, suggesting that mutated genes are mainly regulators, whereas gained genes are mostly regulated. ESR1 was the major transcription factor regulating amplified but not mutated genes. Our results support the hypothesis that multiple genetic events, including copy number gains and somatic mutations, are necessary for establishing the malignant cell phenotype.


Assuntos
Neoplasias da Mama/genética , Amplificação de Genes , Mutação , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes jun , Humanos , Proteoma
2.
Proc Natl Acad Sci U S A ; 105(37): 14076-81, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18780791

RESUMO

Cellular identity and differentiation are determined by epigenetic programs. The characteristics of these programs in normal human mammary epithelium and their similarity to those in stem cells are unknown. To begin investigating these issues, we analyzed the DNA methylation and gene expression profiles of distinct subpopulations of mammary epithelial cells by using MSDK (methylation-specific digital karyotyping) and SAGE (serial analysis of gene expression). We identified discrete cell-type and differentiation state-specific DNA methylation and gene expression patterns that were maintained in a subset of breast carcinomas and correlated with clinically relevant tumor subtypes. CD44+ cells were the most hypomethylated and highly expressed several transcription factors with known stem cell function including HOXA10 and TCF3. Many of these genes were also hypomethylated in BMP4-treated compared with undifferentiated human embryonic stem (ES) cells that we analyzed by MSDK for comparison. Further highlighting the similarity of epigenetic programs of embryonic and mammary epithelial cells, genes highly expressed in CD44+ relative to more differentiated CD24+ cells were significantly enriched for Suz12 targets in ES cells. The expression of FOXC1, one of the transcription factors hypomethylated and highly expressed in CD44+ cells, induced a progenitor-like phenotype in differentiated mammary epithelial cells. These data suggest that epigenetically controlled transcription factors play a key role in regulating mammary epithelial cell phenotypes and imply similarities among epigenetic programs that define progenitor cell characteristics.


Assuntos
Mama/metabolismo , Metilação de DNA , Mama/citologia , Contagem de Células , Forma Celular , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenótipo , Células-Tronco/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...