Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(21): 14615-14629, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765129

RESUMO

Evolutionary radiations are one plausible explanation for the rich biodiversity on Earth. Adaptive radiations are the most studied form of evolutionary radiations, and ecological opportunity has been identified as one factor permitting them. Competition among individuals is supposedly highest in populations of conspecifics. Divergent modes of resource use might minimize trophic overlap, and thus intersexual competition, resulting in ecological character displacement between sexes. However, the role of intersexual differentiation in speciation processes is insufficiently studied. The few studies available suggest that intersexual niche differentiation exists in adaptive radiations, but their role within the radiation, and the extent of differentiation within the organism itself, remains largely unexplored. Here, we test the hypothesis that multiple morphological structures are affected by intersexual niche differentiation in "roundfin" Telmatherina, the first case where intersexual niche differentiation was demonstrated in an adaptive fish radiation. We show that sexes of two of the three morphospecies differ in several structural components of the head, all of these are likely adaptive. Sexual dimorphism is linked to the respective morphospecies-specific ecology and affects several axes of variation. Trait variation translates into different feeding modes, processing types, and habitat usages that add to interspecific variation in all three morphospecies. Intrasexual selection, that is, male-male competition, may contribute to variation in some of the traits, but appears unlikely in internal structures, which are invisible to other individuals. We conclude that intersexual variation adds to the adaptive diversity of roundfins and might play a key role in minimizing intersexual competition in emerging radiations.

2.
J Fish Biol ; 97(2): 537-545, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447773

RESUMO

This study investigated the impact of the third dimension in geometric morphometrics (GM) using sailfin silversides (Telmatherinidae) from the Malili Lakes of Sulawesi (Indonesia). The three morphospecies of the monophyletic "roundfin" radiation are laterally compressed and vary in shape traits. The results of 2D and 3D GM were compared and quantified to discuss the advantages and disadvantages of both methods for closely related species and their sexes. This approach focused on the head because it is far more complex and three-dimensionally structured than the trunk or the caudal region. The results revealed no significant benefit concerning repeatability and measurement error in 3D GM compared to 2D GM. The z-axis contributed substantially to the variance of the 3D data set but was irrelevant for discrimination of species and sexes in the approach. Limited gain in information was contrasted by substantially higher effort for 3D compared to the 2D analyses. The study concluded that 2D GM is the more efficient shape analysis approach for discriminating roundfins. Broader studies are needed to test which of the two methods is more efficient in distinguishing laterally compressed fishes in general. For future studies, due to the high investment required, this study recommends carefully evaluating the necessity of 3D GM. If in doubt, this study suggests testing for congruence between 2D and 3D GM with a subsample and consequently applying 2D GM in the case of high congruence.


Assuntos
Peixes/anatomia & histologia , Imageamento Tridimensional/veterinária , Animais , Humanos , Indonésia , Modelos Anatômicos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...