Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0296109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743696

RESUMO

Colistin resistance is a global concern warning for a one health approach to combat the challenge. Colistin resistant E. coli and their resistance determinants are widely distributed in the environment, and rats could be a potential source of these isolates and resistant determinants to a diverse environmental setting. This study was aimed to determine the presence of colistin resistant E. coli (CREC) in wild rats, their antimicrobial resistance (AMR) phenotypes, and genotypic analysis of mcr-1 CREC through whole genome sequencing (WGS). A total of 39 rats were examined and CREC was isolated from their fecal pellets onto MacConkey agar containing colistin sulfate (1 µg/ mL). AMR of the CREC was determined by disc diffusion and broth microdilution was employed to determine MIC to colistin sulfate. CREC were screened for mcr genes (mcr-1 to mcr-8) and phylogenetic grouping by PCR. Finally, WGS of one mcr-1 CREC was performed to explore its genetic characteristics especially resistomes and virulence determinants. 43.59% of the rats carried CREC with one (2.56%) of them carrying CREC with mcr-1 gene among the mcr genes examined. Examination of seventeen (17) isolates from the CREC positive rats (n = 17) revealed that majority of them belonging to the pathogenic phylogroup D (52.94%) and B2 (11.76%). 58.82% of the CREC were MDR on disc diffusion test. Shockingly, the mcr-1 CREC showed phenotypic resistance to 16 antimicrobials of 8 different classes and carried the ARGs in its genome. The mcr-1 gene was located on a 60 kb IncI2 plasmid. On the other hand, ARGs related to aminoglycosides, phenicols, sulfonamides, tetracyclines and trimethoprims were located on a 288 kb mega-plasmid separately. The mcr-1 CREC carried 58 virulence genes including genes related to adhesion, colonization, biofilm formation, hemolysis and immune-evasion. The isolate belonged to ST224 and closely related to E. coli from different sources including UPEC clinical isolates from human based on cgMLST analysis. The current research indicates that rats might be a possible source of CREC, and the presence of mcr-1 and other ARGs on plasmid increases the risk of ARGs spreading and endangering human health and other environmental components through this infamous pest.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Animais , Colistina/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Ratos , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Bangladesh , Sequenciamento Completo do Genoma/métodos , Filogenia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Animais Selvagens/microbiologia , Fezes/microbiologia
2.
Int J Food Microbiol ; 388: 110065, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610233

RESUMO

Poultry meat is considered as a potential source of colistin resistant Escherichia coli (CREC). This study aimed to determine the prevalence and characteristics of CREC in broiler meat and ascertain their possible zoonotic potential(s). Broiler meat (n = 104) comprising 26 of each of the thigh, breast, liver, and proventriculus-gizzard was purchased from the retail outlets, Bangladesh. CREC was isolated from the meat samples on MacConkey agar plates containing colistin sulfate followed by PCR confirmation, mcr subtyping (mcr-1 to mcr-5), phylogenetic grouping and detailed molecular characterization through whole genome sequencing (WGS). Antimicrobial resistance of the CREC isolates were evaluated by disc diffusion method and MIC (minimum inhibitory concentration) of colistin sulfate was determined by broth microdilution. The investigation revealed 58 (55.77 %) of 104 samples as positive for CREC, and 53 (91.38 %) of CREC isolates carried mcr-1 gene with no other mcr subtypes evident. Most of the CREC belonged to commensal E. coli (66.04 %) with some pathogenic phylotypes (33.96 %) based on dichotomous decision tree. All the mcr-1 CREC isolates were multidrug-resistant (MDR) and had MICs of 4-8 µg/mL colistin sulfate. WGS of a commensal MDR mcr-1 CREC strain 1ChBEc2mcr revealed as a potential human pathogen belonging to ST162 that harbored 60 virulence factors associated genes (VFGs). The mcr-1 gene in 1ChBEc2mcr genome was located on a plasmid (p1ChBEc2mcr) and showed nucleotide similarities (>95 %) to another plasmid reported from human E. coli in Bangladesh. Beyond mcr-1 gene, this plasmid (p1ChBEc2mcr) also harbored genes related to aminoglycoside, beta-lactams, macrolides, and tetracycline resistance. Presence of similar mcr-1 carrying plasmids in broiler and human CREC denotes a threat of possibly human to avian (broiler) or vice-versa transfer of mcr-1 CREC through close contact as prevailing in the retail outlets of Bangladesh.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Animais , Colistina/farmacologia , Proteínas de Escherichia coli/genética , Filogenia , Bangladesh , Galinhas/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Plasmídeos , Carne/análise , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...