Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Endocrinol ; 19(3): 804-11, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15563545

RESUMO

Fas-mediated apoptosis has been proposed to play an important role in the pathogenesis of Hashimoto's thyroiditis. Normal thyroid cells are resistant to Fas-mediated apoptosis in vitro but can be sensitized by the unique combination of interferon-gamma and IL-1beta cytokines. We sought to examine the mechanism of this sensitization and apoptosis signaling in primary human thyroid cells. Without the addition of cytokines, agonist anti-Fas antibody treatment of the thyroid cells resulted in the cleavage of proximal caspases, but this did not lead to the activation of caspase 7 and caspase 3. Apoptosis associated with the cleavage of caspases 7, 3, and Bid, and the activation of mitochondria in response to anti-Fas antibody occurred only after cytokine pretreatment. Cell surface expression of Fas, the cytoplasmic concentrations of procaspases 7, 8, and 10, and the proapoptotic molecule Bid were markedly enhanced by the presence of the cytokines. In contrast, P44/p42 MAPK (Erk) appeared to provide protection from Fas-mediated apoptosis because an MAPK kinase inhibitor (U0126) sensitized thyroid cells to anti-Fas antibody. In conclusion, Fas signaling is blocked in normal thyroid cells at a point after the activation of proximal caspases. Interferon-gamma/IL-1beta pretreatment sensitizes human thyroid cells to Fas-mediated apoptosis in a complex manner that overcomes this blockade through increased expression of cell surface Fas receptor, increases in proapoptotic molecules that result in mitochondrial activation, and late caspase cleavage. This process involves Bcl-2 family proteins and appears to be compatible with type II apoptosis regulation.


Assuntos
Apoptose , Células Epiteliais/citologia , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Receptor fas/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Butadienos/farmacologia , Proteínas de Transporte/metabolismo , Caspase 3 , Caspase 7 , Caspases/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Humanos , Immunoblotting , Interferon gama/metabolismo , Interleucina-1/metabolismo , Mitocôndrias/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/metabolismo , Transdução de Sinais , Glândula Tireoide/citologia , Receptor fas/fisiologia
2.
J Clin Endocrinol Metab ; 89(1): 250-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14715858

RESUMO

Primary thyroid cells are resistant to TNF-related apoptosis-inducing ligand (TRAIL). Previously we showed that the combination of IL-1beta and TNFalpha facilitated TRAIL-mediated apoptosis in these cells and enhanced cell surface expression of TRAIL receptors. The aim of this study was to further characterize the mechanism by which these cytokines sensitized primary thyroid cells to TRAIL-mediated apoptosis. IL-1beta and TNFalpha increased the concentrations of procaspase-7 and Bid. In contrast, the p44/42 MAPK (Erk) pathway was active in thyroid cells and this activity was significantly decreased after exposure to IL-1beta/TNFalpha. A MAPK kinase inhibitor (U0126) could enhance the cytokine-induced sensitization of thyroid cells to TRAIL, reinforcing the inhibitory role of Erk on TRAIL signaling. In conclusion, IL-1beta/TNFalpha treatment sensitizes human thyroid cells to TRAIL-mediated apoptosis through increased surface expression of TRAIL receptors, increased expression of procaspase-7 and Bid, and the inhibition of p44/42 MAPK (Erk) pathway.


Assuntos
Apoptose/efeitos dos fármacos , Interleucina-1/farmacologia , Glicoproteínas de Membrana/farmacologia , Glândula Tireoide/citologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Reguladoras de Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Ativação Enzimática , Células Epiteliais/citologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/análise , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/análise , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF
3.
Oncogene ; 23(4): 928-35, 2004 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-14647456

RESUMO

TRAIL preferentially induces apoptosis in tumor cells and virus-infected cells. Unlike other tumor necrosis factor family members, TRAIL does not kill cells from most normal tissues and has thus been proposed as a promising new cancer treatment. Our study demonstrated that IFNgamma combined with TRAIL can trigger apoptosis in vitro in several resistant thyroid tumor cell lines, such as thyroid anaplastic carcinoma cells (ARO cells), while either agent alone exerts only a minimal effect. We further tested this effect on a mouse thyroid tumor model, when in vivo tumor growth was also significantly inhibited by this combination. The mechanism of how IFNgamma sensitized thyroid carcinoma cells to TRAIL-induced apoptosis was investigated by screening global gene alterations in ARO cells treated with IFNgamma. Microarray data revealed that a proapoptotic gene, Bak, is markedly upregulated by IFNgamma, and this was confirmed by RNase protection assay. Western blot analysis also showed a significant increase in Bak at the protein level. Upregulation of Bak and sensitization for apoptosis by IFNgamma was blocked by overexpression of antisense Bak in ARO cells. Furthermore, overexpression of Bak sensitized ARO cell to TRAIL-induced apoptosis without the need for IFNgamma pretreatment. This suggests that Bak is a regulatory molecule involved in IFNgamma-facilitated TRAIL-mediated apoptosis in thyroid cancer cells.


Assuntos
Apoptose/fisiologia , Interferon gama/farmacologia , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Neoplasias da Glândula Tireoide/patologia , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ligante Indutor de Apoptose Relacionado a TNF , Proteína Killer-Antagonista Homóloga a bcl-2
4.
J Clin Endocrinol Metab ; 87(9): 4264-72, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12213883

RESUMO

The specific pathogenesis of nodular goiter and the role of apoptosis in goitrogenesis are not known. We sought to examine the regulation of the TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL)-induced apoptosis pathways in primary thyroid cells from 17 patients with nodular goiter, using 10 normal thyroids as controls. Both goitrous and normal thyroid cells were resistant to recombinant human TRAIL and an agonist anti-Fas antibody under basal conditions. However, all normal thyrocytes could be sensitized by TNFalpha/IL-1beta or interferon gamma/IL-1beta to undergo apoptosis in response to TRAIL or FasL, respectively. In contrast, the majority of goiter-derived cells remained resistant to TRAIL (12 of 17 samples) or FasL (9 of 17 samples) after cytokine pretreatment; 14 of 17 goiter nodules were resistant to at least one death ligand. Goiter size was inversely correlated with the sensitivity to TRAIL-mediated apoptosis. The resistance of goiter cells to TRAIL did not appear to be due to transcriptional regulation or cell surface expression of death and decoy receptors. However, increased proteasome activity was found in a subset of goiter cells resistant to both death ligands, and proteasome inhibitors could sensitize these goiter cells to TRAIL-mediated apoptosis. In conclusion, goiter-derived thyroid cells are resistant to TRAIL and/or Fas-induced apoptosis in vitro, and this may represent a new aspect of aberrant growth regulation in goiter nodules. The increased proteasome activity associated with this resistance suggests that the proteasome may be an important regulator of apoptosis in nodular goiter.


Assuntos
Acetilcisteína/análogos & derivados , Apoptose/fisiologia , Bócio Nodular/patologia , Queratinas/metabolismo , Glândula Tireoide/patologia , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Bócio Nodular/imunologia , Bócio Nodular/cirurgia , Humanos , Immunoblotting , Interferon gama/farmacologia , Glicoproteínas de Membrana/metabolismo , Proteínas Recombinantes , Valores de Referência , Ligante Indutor de Apoptose Relacionado a TNF , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Tireoidectomia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Receptor fas/análise
5.
J Immunol ; 168(5): 2470-4, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11859140

RESUMO

Treatment of cultured primary human thyroid cells with IFN-gamma and TNF-alpha uniquely allows the induction of Fas-mediated apoptosis. To investigate the role of this cytokine combination in vivo, CBA/J mice were immunized with thyroglobulin and then injected with IFN-gamma and TNF-alpha. Compared with control animals, mice treated with IFN-gamma and TNF-alpha showed significantly sustained lymphocytic infiltration in the thyroid, which was associated with the destruction of portions of the follicular architecture at wk 6 after initial immunization. Furthermore, the number of apoptotic thyroid follicular cells was increased only in the thyroids from mice treated with the IFN-gamma and TNF-alpha. We also analyzed the function of the Fas pathway in vivo in cytokine-treated mice by using an agonist anti-Fas Ab injected directly into the thyroid. Minimal apoptosis of thyroid epithelial cells was observed unless the mice were pretreated with IFN-gamma and TNF-alpha. These data demonstrate that this unique combination of inflammatory cytokines facilitates the apoptotic destruction of thyroid follicular cells in experimental autoimmune thyroiditis, in a manner similar to what is observed in Hashimoto's thyroiditis in humans.


Assuntos
Apoptose , Interferon gama/farmacologia , Glândula Tireoide/patologia , Tireoidite Autoimune/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Autoanticorpos/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Sinergismo Farmacológico , Feminino , Camundongos , Camundongos Endogâmicos CBA , Tireoglobulina/imunologia , Tireoidite Autoimune/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...