Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RMD Open ; 10(2)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886001

RESUMO

OBJECTIVES: To train, test and validate the performance of a convolutional neural network (CNN)-based approach for the automated assessment of bone erosions, osteitis and synovitis in hand MRI of patients with inflammatory arthritis. METHODS: Hand MRIs (coronal T1-weighted, T2-weighted fat-suppressed, T1-weighted fat-suppressed contrast-enhanced) of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients from the rheumatology department of the Erlangen University Hospital were assessed by two expert rheumatologists using the Outcome Measures in Rheumatology-validated RA MRI Scoring System and PsA MRI Scoring System scores and were used to train, validate and test CNNs to automatically score erosions, osteitis and synovitis. Scoring performance was compared with human annotations in terms of macro-area under the receiver operating characteristic curve (AUC) and balanced accuracy using fivefold cross-validation. Validation was performed on an independent dataset of MRIs from a second patient cohort. RESULTS: In total, 211 MRIs from 112 patients (14 906 region of interests (ROIs)) were included for training/internal validation using cross-validation and 220 MRIs from 75 patients (11 040 ROIs) for external validation of the networks. The networks achieved high mean (SD) macro-AUC of 92%±1% for erosions, 91%±2% for osteitis and 85%±2% for synovitis. Compared with human annotation, CNNs achieved a high mean Spearman correlation for erosions (90±2%), osteitis (78±8%) and synovitis (69±7%), which remained consistent in the validation dataset. CONCLUSIONS: We developed a CNN-based automated scoring system that allowed a rapid grading of erosions, osteitis and synovitis with good diagnostic accuracy and using less MRI sequences compared with conventional scoring. This CNN-based approach may help develop standardised cost-efficient and time-efficient assessments of hand MRIs for patients with arthritis.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Osteíte , Sinovite , Humanos , Osteíte/diagnóstico por imagem , Osteíte/etiologia , Osteíte/diagnóstico , Osteíte/patologia , Sinovite/diagnóstico por imagem , Sinovite/etiologia , Sinovite/diagnóstico , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/complicações , Mãos/diagnóstico por imagem , Mãos/patologia , Artrite Psoriásica/diagnóstico por imagem , Artrite Psoriásica/diagnóstico , Adulto , Idoso , Curva ROC , Índice de Gravidade de Doença , Redes Neurais de Computação
2.
Phys Med Biol ; 68(20)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779386

RESUMO

Objective.Incorporating computed tomography (CT) reconstruction operators into differentiable pipelines has proven beneficial in many applications. Such approaches usually focus on the projection data and keep the acquisition geometry fixed. However, precise knowledge of the acquisition geometry is essential for high quality reconstruction results. In this paper, the differentiable formulation of fan-beam CT reconstruction is extended to the acquisition geometry.Approach.The CT fan-beam reconstruction is analytically derived with respect to the acquisition geometry. This allows to propagate gradient information from a loss function on the reconstructed image into the geometry parameters. As a proof-of-concept experiment, this idea is applied to rigid motion compensation. The cost function is parameterized by a trained neural network which regresses an image quality metric from the motion-affected reconstruction alone.Main results.The algorithm improves the structural similarity index measure (SSIM) from 0.848 for the initial motion-affected reconstruction to 0.946 after compensation. It also generalizes to real fan-beam sinograms which are rebinned from a helical trajectory where the SSIM increases from 0.639 to 0.742.Significance.Using the proposed method, we are the first to optimize an autofocus-inspired algorithm based on analytical gradients. Next to motion compensation, we see further use cases of our differentiable method for scanner calibration or hybrid techniques employing deep models.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Calibragem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico , Artefatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...