Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 56(22): 3066-3081.e5, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34706263

RESUMO

In Arabidopsis mature seeds, the onset of the embryo-to-seedling transition is nonautonomously controlled, being blocked by endospermic abscisic acid (ABA) release under unfavorable conditions. Whether the mature endosperm governs additional nonautonomous developmental processes during this transition is unknown. Mature embryos have a more permeable cuticle than seedlings, consistent with their endospermic ABA uptake capability. Seedlings acquire their well-sealing cuticles adapted to aerial lifestyle during germination. Endosperm removal prevents seedling cuticle formation, and seed reconstitution by endosperm grafting onto embryos shows that the endosperm promotes seedling cuticle development. Grafting different endosperm and embryo mutant combinations, together with biochemical, microscopy, and mass spectrometry approaches, reveal that the release of tyrosylprotein sulfotransferase (TPST)-sulfated CIF2 and PSY1 peptides from the endosperm promotes seedling cuticle development. Endosperm-deprived embryos produced nonviable seedlings bearing numerous developmental defects, not related to embryo malnutrition, all restored by exogenously provided endosperm. Hence, seedling establishment is nonautonomous, requiring the mature endosperm.


Assuntos
Arabidopsis/metabolismo , Endosperma/metabolismo , Peptídeos/metabolismo , Plântula/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação , Plantas , Sementes/metabolismo
2.
Plant J ; 104(3): 567-580, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32985026

RESUMO

The seed coat is specialized dead tissue protecting the plant embryo from mechanical and oxidative damage. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa mutant seeds, deficient in flavonoid synthesis, exhibit low viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface and arising from the seed coat inner integument 1 cell layer was, intriguingly, previously shown to be more permeable in transparent testa mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify periclinal inner integument 1 tannic cell walls being attached, together with the cuticle, to the endosperm surface upon seed coat rupture. Hence, inner integument 1 tannic cell walls and the cuticle form two fused layers present at the surface of the exposed endosperm upon seed coat rupture, regulating its permeability. Their potential physiological role during seed germination is discussed.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Endosperma/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia
3.
Plant J ; 102(3): 507-516, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31816134

RESUMO

Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. Polyphosphates represent important stores of phosphate and energy, and are abundant in many pro- and eukaryotic organisms. In plants, the existence of polyPs has been established using microscopy and biochemical extraction methods that are now known to produce artifacts. Here we use a polyP-specific dye and a polyP-binding domain to detect polyPs in plant and algal cells. To develop the staining protocol, we induced polyP granules in Nicotiana benthamiana and Arabidopsis cells by heterologous expression of Escherichia coli polyphosphate kinase 1 (PPK1). Over-expression of PPK1 but not of a catalytically impaired version of the enzyme leads to severe growth phenotypes, suggesting that ATP-dependent synthesis and accumulation of polyPs in the plant cytosol is toxic. We next crossed stable PPK1-expressing Arabidopsis lines with plants expressing the polyP-binding domain of E. coli exopolyphosphatase (PPX1c), which co-localized with PPK1-generated polyP granules. These granules were stained by the polyP-specific dye JC-D7 and appeared as electron-dense structures in transmission electron microscopy sections. Using the polyP staining protocol derived from these experiments, we screened for polyP stores in different organs and tissues of both mono- and dicotyledonous plants. While we could not detect polyP granules in higher plants, we could visualize the polyP-rich acidocalcisomes in the green alga Chlamydomonas reinhardtii.


Assuntos
Polifosfatos/metabolismo , Chlamydomonas/metabolismo , Metabolismo Energético/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
4.
Plant Physiol ; 177(3): 1218-1233, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29848749

RESUMO

Mature dry seeds are highly resilient plant structures where the encapsulated embryo is kept protected and dormant to facilitate its ultimate dispersion. Seed viability is heavily dependent on the seed coat's capacity to shield living tissues from mechanical and oxidative stress. In Arabidopsis (Arabidopsis thaliana), the seed coat, also called the testa, arises after the differentiation of maternal ovular integuments during seed development. We recently described a thick cuticle tightly embedded in the mature seed's endosperm cell wall. We show here that it is produced by the maternal inner integument 1 layer and, remarkably, transferred to the developing endosperm. Arabidopsis transparent testa (tt) mutations cause maternally derived seed coat pigmentation defects. TT gene products encode proteins involved in flavonoid metabolism and regulators of seed coat development. tt mutants have abnormally high seed coat permeability, resulting in lower seed viability and dormancy. However, the biochemical basis of this high permeability is not fully understood. We show that the cuticles of developing tt mutant integuments have profound structural defects, which are associated with enhanced cuticle permeability. Genetic analysis indicates that a functional proanthocyanidin synthesis pathway is required to limit cuticle permeability, and our results suggest that proanthocyanidins could be intrinsic components of the cuticle. Together, these results show that the formation of a maternal cuticle is an intrinsic part of the normal integumental differentiation program leading to testa formation and is essential for the seed's physiological properties.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Endosperma/fisiologia , Sementes/citologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Endosperma/efeitos dos fármacos , Endosperma/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutação , Permeabilidade , Plantas Geneticamente Modificadas , Sementes/genética , Cloreto de Tolônio/farmacologia
5.
PLoS Genet ; 11(12): e1005708, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26681322

RESUMO

Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.


Assuntos
Germinação/genética , Giberelinas/genética , Lipídeos de Membrana/genética , Dormência de Plantas/genética , Arabidopsis , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...