Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; 40(10): 1546-1554, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35331055

RESUMO

The use of plastics is rapidly rising around the world causing a major challenge for recycling. Lately, a lot of emphasis has been put on recycling of packaging plastics, but, in addition, there are high volume domains with low recycling rate such as automotive, building and construction, and electric and electronic equipment. Waste plastics from these domains often contain additives that restrict their recycling due to the hazardousness and challenges they bring to chemical and mechanical recycling. As such, the first step for enabling the reuse of these fractions is the identification of these additives in the waste plastics. This study compares the ability of different optical spectroscopy technologies to detect two different plastic additives, fire retardants ammonium polyphosphate and aluminium trihydrate, inside polypropylene plastic matrix. The detection techniques near-infrared (NIR), Fourier-transform infrared (FTIR) and Raman spectroscopy as well as hyperspectral imaging (HSI) in the short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) range were evaluated. The results indicate that Raman, NIR and SWIR HSI have the potential to detect these additives inside the plastic matrix even at relatively low concentrations. As such, utilising these methods has the possibility to facilitate sorting and recycling of as of yet unused plastic waste streams, although more research is needed in applying them in actual waste sorting facilities.


Assuntos
Compostos de Amônio , Resíduo Eletrônico , Retardadores de Chama , Alumínio , Resíduo Eletrônico/análise , Plásticos , Polifosfatos , Polipropilenos , Reciclagem , Análise Espectral
2.
Foods ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34828968

RESUMO

Today, measurement of raw milk quality and composition relies on Fourier transform infrared spectroscopy to monitor and improve dairy production and cow health. However, these laboratory analyzers are bulky, expensive and can only be used by experts. Moreover, the sample logistics and data transfer delay the information on product quality, and the measures taken to optimize the care and feeding of the cattle render them less suitable for real-time monitoring. An on-farm spectrometer with compact size and affordable cost could bring a solution for this discrepancy. This paper evaluates the performance of microelectromechanical system (MEMS)-based near-infrared (NIR) spectrometers as on-farm milk analyzers. These spectrometers use Fabry-Pérot interferometers for wavelength tuning, giving them the advantage of very compact size and affordable price. This study discusses the ability of MEMS spectrometers to reach the accuracy limits set by the International Committee for Animal Recording (ICAR) for at-line analyzers of the milk content regarding fat, protein and lactose. According to the achieved results, the transmission measurements with the NIRONE 2.5 spectrometer perform best, with an acceptable root mean squared error of prediction (RMSEP = 0.21% w/w) for the measurement of milk fat and excellent performance (RMSEP ≤ 0.11% w/w) for protein and lactose. In addition, the transmission measurements using the NIRONE 2.0 module give similar results for fat and lactose (RMSEP of 0.21 and 0.10% w/w respectively), while the prediction of protein is slightly deteriorated (RMSEP = 0.15% w/w). These results show that the MEMS spectrometers can reach sufficient prediction accuracy compared to ICAR standard values for at-line and in-line fat, protein and lactose prediction.

3.
Sci Adv ; 5(8): eaaw9906, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31453333

RESUMO

Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor components, including microfluidic chip and sensing electrodes. To overcome this challenge, we introduce microfluidic sensing patches mass fabricated via roll-to-roll (R2R) processes. The patch allows sweat capture within a spiral microfluidic for real-time measurement of sweat parameters including [Na+], [K+], [glucose], and sweat rate in exercise and chemically induced sweat. The patch is demonstrated for investigating regional sweat composition, predicting whole-body fluid/electrolyte loss during exercise, uncovering relationships between sweat metrics, and tracking glucose dynamics to explore sweat-to-blood correlations in healthy and diabetic individuals. By enabling a comprehensive sweat analysis, the presented device is a crucial tool for advancing sweat testing beyond the research stage for point-of-care medical and athletic applications.


Assuntos
Glucose/análise , Microfluídica/métodos , Potássio/análise , Sódio/análise , Suor/química , Técnicas Biossensoriais , Diabetes Mellitus/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Íons/análise , Potássio/química , Sódio/química
4.
J Biophotonics ; 11(7): e201700225, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29388744

RESUMO

The ability of noble metal-based nanoparticles (NPs) (Au, Ag) to drastically enhance Raman scattering from molecules placed near metal surface, termed as surface-enhanced Raman scattering (SERS), is widely used for identification of trace amounts of biological materials in biomedical, food safety and security applications. However, conventional NPs synthesized by colloidal chemistry are typically contaminated by nonbiocompatible by-products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. In this article, we explore novel ultrapure laser-synthesized Au-based nanomaterials, including Au NPs and AuSi hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection. We show that these Au-based nanomaterials can efficiently enhance Raman signals from model R6G molecules, while the enhancement factor depends on the content of Au in NP composition. Profiting from the observed enhancement and purity of laser-synthesized nanomaterials, we demonstrate successful identification of 2 types of bacteria (Listeria innocua and Escherichia coli). The obtained results promise less disturbing studies of biological systems based on good biocompatibility of contamination-free laser-synthesized nanomaterials.


Assuntos
Escherichia coli/isolamento & purificação , Ouro/química , Listeria/isolamento & purificação , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Análise Espectral Raman , Lasers , Propriedades de Superfície
5.
Ann Maxillofac Surg ; 8(2): 265-269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693243

RESUMO

BACKGROUND: Aggressive familial giant-cell granulomas of the jaws can be severely deforming. Surgical and nonsurgical treatments may be associated with multiple recurrences. Denosumab, a new generation antiresorptive drug, is an osteoclast inhibitor, which may be particularly useful to manage such potentially disfiguring lesions. MATERIALS AND METHODS: Two sisters, both with a history of multiple recurrent aggressive central giant-cell granuloma (CGCG)-like lesions in both jaws, were referred for management. All lesions were histologically consistent with the diagnosis of CGCG. The lesions were treated surgically with curettage and perilesional injection of triamcinolone. In particular, the older sister had four separate anatomic sites where some of her lesions had multiple recurrences necessitating three repeat procedures. A course of subcutaneous denosumab was administered following the last giant-cell granuloma removal in both sisters. RESULTS: Bony healing was normal. No further recurrences were observed over 3.5 years of follow-up after denosumab therapy in either sister. CONCLUSIONS: In this small cohort comprising two sisters with multiple aggressive recurrent giant-cell granuloma lesions at multiple sites in the mouth, subcutaneous denosumab administration was associated with success over 3.5 years of follow-up. This report cautiously adds to the clinical experience in the use of denosumab for the treatment of recurrent aggressive familial CGCG lesions.

6.
Appl Opt ; 51(12): 1886-93, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22534893

RESUMO

A polymer based dual-slab waveguide Young's interferometer was demonstrated for biochemical sensing. Evanescent field is utilized for probing the binding events of biomolecules on the waveguide surface. Refractive index sensing in analyte and protein adsorption on the sensing surface were investigated with glucose de-ionized water solution and bovine serum albumin, immunoglobulin G solutions in phosphate buffered saline buffer. A detection limit of 10(-5) RIU and 4 pg/mm(2) was achieved for homogeneous and surface sensing, respectively. Also, the influence of water absorption inside the polymeric device on the measurement stability was evaluated. The results indicate that the waveguide polymer sensor fabricated with the spin coating technique can achieve a satisfactory sensitivity for homogeneous refractive index sensing and, as well, for monitoring molecular binding events on the surface.


Assuntos
Bioquímica/métodos , Interferometria/métodos , Polímeros/química , Absorção , Adsorção , Animais , Técnicas Biossensoriais , Bovinos , Glucose/química , Modelos Estatísticos , Modelos Teóricos , Refratometria , Soroalbumina Bovina/química , Água/química
7.
Lab Chip ; 12(2): 333-9, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22127494

RESUMO

We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications were foreseen already some years ago, no such studies have been published previously.


Assuntos
Proteínas de Bactérias/genética , Eletroforese em Gel de Ágar , Técnicas Analíticas Microfluídicas/instrumentação , Staphylococcus epidermidis/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/análise , Farmacorresistência Bacteriana/genética , Técnicas Analíticas Microfluídicas/métodos , Microscopia Confocal , Polimetil Metacrilato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...