Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emergent Mater ; 4(1): 363-386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585793

RESUMO

Coronavirus disease 2019 (COVID-19) that is SARS-CoV-2, previously called 2019-nCoV, is a kind of human infectious disease caused by severe acute respiratory syndrome coronavirus. Based on the prompt increase of human infection rate, COVID-19 outbreak was distinguished as a pandemic by the World Health Organization (WHO). By 2020, COVID-19 becomes a major health problem all around the world. Due to the battle against COVID-19, there are some adversities that are encountered with. The most significant difficulty is the lack of equipment for the COVID-19 battle. Lately, there is not sufficient personal protective equipment (PPE) for hospital workers on the front lines in this terrifying time. All around the world, hospitals are overwhelmed by the volume of patients and the lack of personal protective equipment including face masks, gloves, eye protection and clothing. In addition, the lack of nasal swabs, which are necessary components, that are used for testing is another issue that is being faced. There are a small number of respirators, which are emergency devices that help patients breathe for a short period of time. To overcome the limited number of equipment available, the foremost solution can be 3D printing that allows three-dimensional renderings to be realized as physical objects with the use of a printer and that revolutionized prototyping. Low-cost desktop 3D printers allow economical 3D models and guides but have less quality approvals. 3D printing is already well integrated into the process of COVID-19 battle by manufacturing the equipment that are convenient. The goals of this review are to explore the techniques of 3D printing for the equipment that are used for COVID-19 battle and evaluate the materials that are used for manufacturing and the manufactured equipment. Lastly, the advantages and disadvantages of 3D printing are figured out.

2.
APL Bioeng ; 4(4): 041506, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33305162

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsible for the coronavirus disease of 2019 (COVID-19), which triggers lung failure, pneumonia, and multi-organ dysfunction. This enveloped, positive sense and single-stranded RNA virus can be transmitted through aerosol droplets, direct and indirect contacts. Thus, SARS-CoV-2 is highly contagious and has reached a pandemic level in a few months. Since COVID-19 has caused numerous human casualties and severe economic loss posing a global threat, the development of readily available, accurate, fast, and cost-effective diagnostic techniques in hospitals and in any places where humans spread the virus is urgently required. COVID-19 can be diagnosed by clinical findings and several laboratory tests. These tests may include virus isolation, nucleic acid-based molecular assays like real-time polymerase chain reactions, antigen or antibody-based immunological assays such as rapid immunochromatographic tests, enzyme-linked immunosorbent assays, immunofluorescence techniques, and indirect fluorescent antibody techniques, electrochemical sensors, etc. However, current methods should be developed by novel approaches for sensitive, specific, and accurate diagnosis of COVID-19 cases to control and prevent this outbreak. Thus, this review will cover an overview and comparison of multiple reports and commercially available kits that include molecular tests, immunoassays, and sensor-based diagnostic methods for diagnosis of COVID-19. The pros and cons of these methods and future perspectives will be thoroughly evaluated and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...