Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 29: 100818, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900592

RESUMO

Regulation of 5-aminolevulinate synthase 1 (ALAS1) for nonerythroid heme is critical for respiration, cell signaling mechanisms and steroid/drug metabolism. ALAS1 is induced in some genetic disorders but unlike other genes in the heme pathway, a gene variant of ALAS1 associated with inherited disease has not been reported. BALB/c mice carrying a null ALAS1 allele caused by a ßGEO insert were developed and used to determine the consequences of heme demand of a semi gene copy number. Homozygous disruption of ALAS1 (-/-) was lethal for embryo development post day 6.5 but expression in heterozygotes (+/-) was sufficient for the number of offspring and survival. In both wild type (WT +/+) and +/- mice expression of ALAS1 RNA was greatest in liver and harderian gland and much lower in kidney, lung, heart, brain and spleen. The effects of one WT ALAS1 allele in +/- mice on mRNA levels in liver and harderian gland were less marked compared to brain and other organs that were examined. Many other genes were up-regulated by heterozygosity in liver and brain but to a minimal extent. Hepatic heme oxygenase 1 (HMOX1) mRNA expression was significantly lower in +/- mice but not in brain. No elevated translation of WT allele ALAS1 mRNA was detected in +/- liver as a compensatory mechanism for the disabled allele. Fasting induced ALAS1 mRNA in both WT and +/- mice but only in +/- was this manifest as increased ALAS1 protein. The hepatic protoporphyria-inducing drug 4-ethyl-DDC caused induction of hepatic ALAS1 mRNA and protein levels in both WT and +/- mice but markedly less in the mice with only one intact allele. The findings illustrate the complex response of ALAS1 expression for heme demand but limited evidence that upregulation of a wild type allele can compensate for a null allele.

2.
Mol Plant Pathol ; 17(7): 1032-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26609905

RESUMO

Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.


Assuntos
Fusarium/genética , Fusarium/patogenicidade , Genes Fúngicos , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Essenciais , Funções Verossimilhança , Cebolas/genética , Cebolas/microbiologia , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Alinhamento de Sequência , Especificidade da Espécie
3.
Acta Microbiol Immunol Hung ; 60(2): 211-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23827752

RESUMO

Lake Hévíz is the largest natural warm water lake of Europe. The curative mud of the lake comprises volcanic and marsh components although their species composition is hardly known yet. The aim of the present study was to gain information about the distribution and species diversity of bacterial communities inhabiting the sediment of Lake Hévíz using cultivation-based and molecular cloning methods. Samples from two depths and locations were taken in 2004 and 2007. Representatives of the altogether 255 bacterial isolates were affiliated with the phyla Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes. The most abundant groups belonged to the genus Bacillus (Firmicutes). Many of Lake Hévíz isolates showed the highest sequence similarity to bacteria known to be plant associated or members of normal human microbiota as well as participating in decomposition of highly resistant organic materials. In the three clone libraries, phylotypes belonging to altogether different phyla (Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria, Chlorobi, Chloroflexi, Deferribacteres, Nitrospirae, Spirochaetes and Verrucomicrobia) were revealed from which members of Gammaproteobacteria and Cyanobacteria proved to be the most abundant. Regardless of the sampling times and methodology used, high spatial heterogeneities of bacterial community structures were characteristic of the sediment of Lake Hévíz.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Filogenia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Ribossômico/genética , Sedimentos Geológicos/análise , Lagos/análise , Dados de Sequência Molecular , RNA Ribossômico 16S/genética
4.
Acta Microbiol Immunol Hung ; 54(4): 339-52, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18088008

RESUMO

From reed biofilm samples of Kelemen-szék (Kiskunság National Park, KNP) and Nagy-Vadas (Hortobágy National Park, HNP) altogether 260 bacterial isolates were gained after serial dilutions and plating onto different media. Following a primary selection 164 strains were investigated by "traditional" phenotypic tests and clustered by numerical analysis. Fifty-six representative strains were selected to ARDRA and 16S rDNA sequence analysis for identification. Strains were identified as members of genera Agrobacterium, Paracoccus, Halomonas, Pseudomonas, Bacillus, Planococcus and Nesterenkonia. The species diversity was also investigated by a cultivation independent method. A clone library was constructed using the community DNA isolated from the biofilm sample of Kelemen-szék. Screening of the 140 bacterial clones resulted in 45 different ARDRA groups. Sequence analysis of the representatives revealed a great phylogenetic diversity. A considerable majority of the clones was affiliated with uncultured bacterial clones (with sequence similarity between 93 and 99%) originating from diverse environmental samples (for example salt marshes, compost or wastewater treatment plants). The DNA sequences of other clones showed the presence of genera Flavobacterium, Sphingobacterium, Pseudomonas and Agrobacterium.


Assuntos
Bactérias/isolamento & purificação , Biofilmes , Água Doce/microbiologia , Poaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...