Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 97(11): 2943-2954, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37639014

RESUMO

Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.


Assuntos
Acetaminofen , Aminofenóis , Humanos , Aminofenóis/toxicidade , Acetaminofen/toxicidade , Cisteína , Rim , Glutationa
2.
Mol Ther Oncolytics ; 25: 43-56, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35399606

RESUMO

Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre-existing immunity will be beneficial for future clinical translation. We generated a low-seroprevalence HAdV-D10 serotype vector incorporating an αvß6 integrin-selective peptide, A20, to target αvß6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating "off-target" hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvß6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvß6+ cancer cell lines demonstrated significantly increased transduction mediated by αvß6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvß6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvß6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation.

3.
J Chromatogr A ; 1669: 462956, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35306469

RESUMO

Acetaminophen (paracetamol, APAP) is one of the most widely used drugs worldwide. Unfortunately, its overdose, which is caused by predominant oxidation of APAP, can lead to acute liver injury. In liver, oxidized APAP is conjugated with glutathione, leading to APAP-glutathione conjugate, which is metabolized to APAP-cysteine and APAP-N-acetylcysteine conjugates. Thus, all of those compounds could be used to monitor APAP metabolism in the overdosed patients. To date, only a limited number of rapid and accurate methods have been reported for the assessment of APAP oxidation metabolites using simple instrumentation, and thus this work was aimed at developing a fast and convenient gradient HPLC-UV/MS method. For this purpose, APAP conjugates with glutathione, cysteine, and N-acetylcysteine were synthesized, purified by preparative liquid chromatography, and characterized by NMR and high-resolution mass spectrometry. The gradient elution conditions were optimized using the window diagram approach and the effects of mobile phase composition and additives on separation and detection sensitivity were evaluated using two, i.e., linear and non-linear isocratic retention models. Quantitative parameters of the developed method were evaluated and the effectiveness, sensitivity, and specificity of the method were demonstrated on the analysis of human kidney HK-2 cell lysates, confirming the suitability of the method for routine use in studies on APAP toxicity.


Assuntos
Acetaminofen , Cromatografia de Fase Reversa , Acetilcisteína , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos
4.
Int J Pharm ; 611: 121308, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34800617

RESUMO

The utilization of nanoparticles for the intracellular delivery of theranostic agents faces one substantial limitation. Sequestration in intracellular vesicles prevents them from reaching the desired location in the cytoplasm or nucleus to deliver their cargo. We investigated whether three different cell-penetrating peptides (CPPs), namely, octa-arginine R8, polyhistidine KH27K and histidine-rich LAH4, could promote cytosolic and/or nuclear transfer of unique model nanoparticles-pseudovirions derived from murine polyomavirus. Two types of CPP-modified pseudovirions that carry the luciferase reporter gene were created: VirPorters-IN with CPPs genetically attached to the capsid interior and VirPorters-EX with CPPs noncovalently associated with the capsid exterior. We tested their transduction ability by luciferase assay and monitored their presence in subcellular fractions. Our results confirmed the overall effect of CPPs on the intracellular destination of the particles and suggested that KH27K has the potential to improve the cytosolic release of pseudovirions. None of the VirPorters caused endomembrane damage detectable by the Galectin-3 assay. Remarkably, a noncovalent modification was required to promote high transduction of the reporter gene and cytosolic delivery of pseudovirions mediated by LAH4. Together, CPPs in different arrangements have demonstrated their potential to improve pseudovirion invasion into cells, and these findings could be useful for the development of other nanoparticle-based delivery systems.


Assuntos
Peptídeos Penetradores de Células , Animais , Bioensaio , Cátions , Citosol , Histidina , Camundongos
5.
Vitam Horm ; 117: 47-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34420585

RESUMO

Cell-penetrating peptides (CPPs) are a promising tool for the intracellular delivery of cargo. Due to their ability to cross membranes while also cotransporting various cargoes, they offer great potential for biomedical applications. Several CPPs have been derived from viral proteins with natural roles in the viral replication cycle that require them to breach or fuse to cellular membranes. Additionally, the ability of viruses to cross membranes makes viruses and virus-based particles a convenient model for research on nanoparticle delivery and nanoparticle-mediated gene therapy. In this chapter, we aim to characterize CPPs derived from both structural and nonstructural viral proteins. Their function as enhancers of viral infection and transduction by viral nanoparticles as well as the main features of viral CPPs employed in intracellular cargo delivery are summarized to emphasize their potential use in nanomedicine.


Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo
6.
Int J Pharm ; 576: 119008, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31901358

RESUMO

Viral nanoparticles represent potential natural versatile platforms for targeted gene and drug delivery. Improving the efficiency of gene transfer mediated by viral vectors could not only enhance their therapeutic potential, but also contribute to understanding the limitations in interactions of nanoparticles with cells and the development of new therapeutic approaches. In this study, four cell-penetrating peptides (CPPs), cationic octaarginine (R8), histidine-rich peptides (LAH4 and KH27K) and fusogenic peptide (FUSO), are investigated for their effect on infection by mouse polyomavirus (MPyV) or on transduction of reporter genes delivered by MPyV or related viral vectors. Peptides noncovalently associated with viral particles enhance gene transfer (with the exception of FUSO). Removal of cellular heparan sulfates by the heparinase does not significantly change the enhancing potential of CPPs. Instead, CPPs influences the physical state of viral particles: R8 slightly destabilizes the intact virus, KH27K induces its aggregation and LAH4 promotes disassembly and aggregation of the particles that massively and rapidly associate with cells. The findings indicate that peptides acting as transduction-enhancing agents of polyomavirus-based nanoparticles modulate their physical state, which can be an important prerequisite for sensitization of cells and determination of the further fate of viral particles inside cells.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Vetores Genéticos , Polyomavirus/metabolismo , Transdução Genética , Vírion/metabolismo , Animais , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Peptídeos Penetradores de Células/química , Células HEK293 , Humanos , Camundongos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Polyomavirus/genética , Polyomavirus/ultraestrutura , Vírion/genética , Vírion/ultraestrutura
7.
Materials (Basel) ; 12(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443361

RESUMO

Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...