Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38890851

RESUMO

Meat products are known for their lipid profile rich in saturated fats and cholesterol, and also for the formation of oxidation compounds; therefore, a reduction in animal fat may result in a product less harmful to health. Pijuayo is an Amazon fruit known for its nutritional properties, such as its fiber and lipid content. For these reasons, it is an attractive fruit to replace animal fat in meat products. The present work used pijuayo pulp and peel flours to partially replace animal fat in beef-based burgers at 25% and 50% levels, considering sensory and physicochemical outcomes evaluated by Principal Component Analysis (PCA), Correspondence Analysis (CA) and Multiple Factor Analysis (MFA). Pijuayo flour affected the physicochemical characteristics evaluated by PCA, where the samples with greater fat replacement were characterized by a high carbohydrate content and instrumental yellowness. The minimal fat replacement did not abruptly affect the PCA's instrumental texture and color, proximal composition, yield properties, and lipid oxidation. The overall liking was greater in the 25% fat reduction treatments, even greater than the control, in which positive sensory attributes for liking were highlighted for those treatments. A small segment of consumers (11% of total consumers) preferred the treatment with greater replacement of fat with pijuayo peel flour, which these consumers tended to characterize as seasoned. However, this treatment had the lowest liking. The MFA showed that the sensory characteristics tender and tasty were strongly correlated with overall liking and were highlighted in the samples of 25% fat reduction, suggesting that the pijuayo improves the tenderness and flavor of reduced-fat burgers. Other inclusion levels between 25% and 50% of fat replacement could be explored, and optimization studies are needed. In addition, the sensory characteristics and flavor-enhancing compounds of the fruit, as well as the nutritional aspects of the inclusion of pijuayo, should be studied, such as the fatty acid profile. These characteristics will be informative to explore pijuayo as a fat replacer at a pilot scale and industrial scale.

2.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611310

RESUMO

The long-chain omega-3 fatty acids alpha linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have proven health benefits, but it is not common to find them together in a processed food product. This could lead to healthier and more functional food products, which may have positive implications for consumer health and well-being. This work aimed to fortify a model burger manufactured with fillets of an Amazonian fish (boquichico, Prochilodus nigricans) by adding microencapsulated sacha inchi oil (Plukenetia volubilis, rich in ALA) (MSIO) produced by spray-drying. MSIO was incorporated into the burgers at different levels (0, 3, 4, 5, and 6%). The burgers were characterized by their proximal composition, cooking losses, texture profile, lipid oxidation, sensory profile, overall liking, and fatty acid profile. The results showed that adding MSIO up to concentrations of 5% or 6% increased the instrumental hardness, chewiness, and lipid oxidation in the burgers. However, fortifying the burgers with 3% MSIO was possible without affecting the burgers' sensory properties and overall liking. Regarding the fatty acid profile, the burgers with 3% MSIO had a higher content of polyunsaturated fatty acids, with the ALA, EPA, and DHA types of fatty acids. Therefore, we recommend using this fortification concentration, but future studies should be carried out to improve the oxidative stability of MSIO and the burgers.

3.
Foods ; 13(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38397542

RESUMO

This study aimed to formulate burgers made from three Amazonian fish species: pacu (Pyaractus brachypomus), boquichico (Prochilodus nigricans), and bujurqui (Chaetobranchus flavescens), focusing on sodium reduction and fortification with fish oil microparticles (FOM) rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The proximal composition, sodium and calcium content, instrumental texture profile, fatty acid profile, sensory profile, and overall liking were evaluated. Differences in proximal composition and fatty acid profiles between the fillets were reflected in the burgers. Fortification with FOM increased EPA and DHA in the burgers; thus, they can be considered "high in omega-3 fatty acids" and reduced the n-6/n-3 ratio below 4. There were sensory attributes that could be related to lipid oxidation but reduced overall liking for less than 10% of consumers. Nevertheless, certain sensory attributes (grilled, characteristic, aromatic, tasty, tender, and juicy) had a positive impact on the overall liking of more than 20% of consumers, yielding adequate scores (between 5.60 and 5.71) on the 9-point hedonic scale. The production process must be optimized by knowing the fish fillet quality in depth, improving the FOM and burgers' oxidative stability, and achieving an adequate sensory and hedonic profile by employing consumers' vocabulary to characterize new products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...