Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(17): 11901-8, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-26935911

RESUMO

A series of eight Ru(ii) heteroleptic complexes incorporating an ancillary [2,2']bipyridine functionalised at the [4,4'] positions with one (-type) or two (-type) thienylenevinylenes (nTVs, n = 2 or 4) is reported. Three types of substitutions have been used for nTVs: hexylthioether, hexyloxy and hexyl. The characterisation of the half-sandwich intermediates and final complexes is provided. In particular, the half-sandwich complexes in the -type series are obtained as a racemate, whereas the heteroleptic complexes consist of two regioisomers. Finally, these complexes have been tested as dyes in dye-sensitized solar cells (DSSCs). Counterintuitively, better performances were obtained for -type complexes with shorter 2TV moieties. The best performing dye was the Ru(ii) complex mono-functionalized with a 2TV moiety having an hexylthioether substitution (), which achieved a maximum power efficiency of 2.77% under full sun illumination (AM1.5G standard conditions). The structure-performance relationship in DSSCs is discussed based on photovoltaic and electrochemical data and DFT-calculations.

2.
J Am Chem Soc ; 135(51): 19311-8, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24328274

RESUMO

Here, we show that the synergistic interplay between two binding equilibria, acting at different sites of a (Zn)phthalocyanine-amidine molecule (Pc1), enables the dissociation of the photoinactive phthalocyanine dimer (Pc1)2 into a three-component system, in which a sequence of light harvesting, charge separation, and charge shift is successfully proven. The aforementioned dimer is assembled by dual amidine-Zn(II) coordination between neighboring Pc1 molecules and gives rise to high association constants (KD ≈ 10(11) M(-1)). Such extraordinary stability hampers the individual binding of either carboxylic acid ligands through the amidine group or pyridine-type ligands through the Zn(II) metal atom to (Pc1)2. However, the combined addition of both ligands, which cooperatively bind to different sites of Pc1 through distinct noncovalent interactions, efficiently shifts the overall equilibrium toward a photoactive tricomponent species. In particular, when a fullerene-carboxylic acid (C60A) and either a dimethylamino-pyridine (DMAP) or a phenothiazine-pyridine ligand (PTZP) are simultaneously present, the photoactivity is turned on and evidence is given for an electron transfer from photoexcited Pc1 to the electron-accepting C60A that affords the DMAP-Pc1(•+)-C60A(•-) or PTZP-Pc1(•+)-C60A(•-) radical ion pair states. Only in the latter case does a cascade of photoinduced electron transfer processes afford the PTZP(•+)-Pc1-C60A(•-) radical ion pair state. The latter is formed via a thermodynamically driven charge shift evolving from PTZP-Pc1(•+)-C60A(•-) and exhibits lifetimes that are notably longer than those of DMAP-Pc1(•+)-C60A(•-).

3.
Small ; 9(13): 2348-57, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23418045

RESUMO

In contrast to pristine zinc phthalocyanine (1), zinc phthalocyanine based oPPV-oligomers (2-4) of different chain lengths interact tightly and reversibly with graphite, affording stable and finely dispersed suspensions of mono- to few-layer graphene-nanographene (NG)-that are photoactive. The p-type character of the oPPV backbones and the increasing length of the oPPV backbones facilitate the overall π-π interactions with the graphene layers. In NG/2, NG/3, and NG/4 hybrids, strong electronic coupling between the individual components gives rise to charge transfer from the photoexcited zinc phthalocyanines to NG to form hundreds of picoseconds lived charge transfer states. The resulting features, namely photo- and redoxactivity, serve as incentives to construct and to test novel solar cells. Solar cells made out of NG/4 feature stable and repeatable photocurrent generation during several 'on-off' cycles of illumination with monochromatic IPCE values of around 1%.

4.
Chemistry ; 18(6): 1727-36, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22238125

RESUMO

The synthesis and photophysical properties of several fullerene-phthalocyanine-porphyrin triads (1-3) and pentads (4-6) are described. The three photoactive moieties were covalently connected in an one-step synthesis through 1,3-dipolar cycloaddition to C(60) of the corresponding azomethine ylides generated in situ by condensation reaction of a substituted N-porphyrinylmethylglycine derivative and an appropriated formyl phthalocyanine or a diformyl phthalocyanine derivative, respectively. ZnP-C(60)-ZnPc (3), (ZnP)(2)-ZnPc-(C(60))(2) (6), and (H(2)P)(2)-ZnPc-(C(60))(2) (5) give rise upon excitation of their ZnP or H(2)P components to a sequence of energy and charge-transfer reactions with, however, fundamentally different outcomes. With (ZnP)(2)-ZnPc-(C(60))(2) (6) the major pathway is an highly exothermic charge transfer to afford (ZnP)(ZnP(.+))-ZnPc-(C(60)(.-))(C(60)). The lower singlet excited state energy of H(2)P (i.e., ca. 0.2 eV) and likewise its more anodic oxidation (i.e., ca. 0.2 V) renders the direct charge transfer in (H(2)P)(2)-ZnPc-(C(60))(2) (5) not competitive. Instead, a transduction of singlet excited state energy prevails to form the ZnPc singlet excited state. This triggers then an intramolecular charge transfer reaction to form exclusively (H(2)P)(2)-ZnPc(.+)-(C(60)(.-))(C(60)). A similar sequence is found for ZnP-C(60)-ZnPc (3).

5.
J Inorg Biochem ; 108: 216-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22176884

RESUMO

A photo- and redoxactive system ZnPc-oPPV-C(60)2, in which the photoexcited state electron donor - zinc phthalocyanine - and the ground state electron acceptor - C(60) - are connected by a oligo(p-phenylenevinylene) (oPPV) spacer, has been synthesized in a multi-step synthesis by means of two consecutive Wadsworth-Horner-Emmons and a dipolar 1,3-cycloaddition reactions as key steps. The simpler system ZnPc-C(60)1 has also been prepared as a reference model for photophysical studies. In this regards, the photophysical investigations by means of fluorescence, flash photolysis, and transient-absorption spectroscopy have manifested a clear dependence between charge transfer kinetics and spatial arrangement. In both systems, intramolecular charge separation evolves from the photoexcited ZnPc and yields the ZnPc(·+)/C(60)(·-) radical ion pairs. Interestingly, the ZnPc(·+)/C(60)(·-) radical ion pair lifetimes and quantum yields are strongly impacted by the solvent polarity and the distance. To this end, maximum radical ion pair lifetimes of 2900 and 5530 ps were found in anisol for 1 and 2, respectively.


Assuntos
Indóis/química , Compostos Organometálicos/química , Fulerenos/química , Isoindóis , Estrutura Molecular , Fotoquímica
7.
J Phys Chem B ; 114(19): 6309-15, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20402503

RESUMO

Two series of tetrahedral phthalocyanine-based systems presenting a central carbon or silicon atom have been synthesized and fully characterized. Ethynyl spacers connect the peripheral Pc units to the central core. Some of the structures contain four identical Pc moieties, whereas other ones bear either an electron-withdrawing or an electron releasing group in the fourth subunit. The synthetic strategy consisted in metal mediated coupling reactions between tri-tert-butylethynylphthalocyanine and the corresponding methane or silane derivatives. A second-order nonlinear optical (NLO) study, through hyper-Rayleigh scattering measurements, reveals that, by combining centrosymmetrical moieties that are not second-order NLO active by themselves, in an octupolar fashion, a large second-order NLO response is achieved, in contrast to classical octupolar combinations of donor-acceptor NLO active dipolar moieties. In particular, the C-centered tetramer exhibits a large beta(HRS) value, which is among the highest reported so far for octupolar Pc-based molecules. Interestingly, carbon-centered molecules show a better NLO response with respect to the silicon-centered ones, probably due to a different effective symmetry, largely T(d) for the C-centered compounds and D(2d) for the Si-centered systems. While other design strategies for second-order NLO effects have always fundamentally kept on relying on the old dipolar paradigm (even though the resulting molecular structure was octupolar--the most striking exponent of this is the octupolar 1,3,5-triamino-2,4,6-trinitrobenzene molecule, a simple octupolar expansion of the dipolar p-nitroaniline), we here present for the first time that the octupolar symmetry by itself, realized by four nondipolar moieties in a tetrahedral arrangement, results also in a large second-order nonlinear response.

8.
Chemistry ; 16(6): 1929-40, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20039345

RESUMO

A panchromatic 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-zinc phthalocyanine conjugate (Bodipy-ZnPc) 1 was synthesized starting from phthalocyanine aldehyde 4, via dipyrromethane 3 and dipyrromethene 2. Conjugate 1 represents the first example in which a Bodipy unit is tethered to the peripheral position of a phthalocyanine core. Electrochemical and optical measurements provided evidence for strong electronic interactions between the Bodipy and ZnPc constituents in the ground state of 1. When conjugate 1 is subjected to photoexcitation in the spectral region corresponding to the Bodipy absorption, the strong fluorescence characteristic of the latter subunit is effectively quenched (i.e., > or = 97%). Excitation spectral analysis confirmed that the photoexcited Bodipy and the tethered ZnPc subunits interact and that intraconjugate singlet energy transfer occurs with an efficiency of ca. 25%. Treatment of conjugate 1 with N-pyridylfulleropyrrolidine (8), an electron-acceptor system containing a nitrogen ligand, gives rise to the novel electron donor-acceptor hybrid 1<-->8 through ligation to the ZnPc center. Irradiation of the resulting supramolecular ensemble within the visible range leads to a charge-separated Bodipy-ZnPc(*+)-C(60)(*-) radical-ion-pair state, through a sequence of excited-state and charge transfers, characterized by a remarkably long lifetime of 39.9 ns in toluene.


Assuntos
Compostos de Boro/química , Fluorescência , Fulerenos/química , Indóis/química , Compostos Organometálicos/química , Dimerização , Eletroquímica/métodos , Isoindóis , Modelos Químicos , Fotoquímica/métodos , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Compostos de Zinco
9.
Dalton Trans ; (20): 3955-63, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19440594

RESUMO

The synthesis of two poly(p-phenylenevinylene) oligomers (oPPV) laterally substituted by phthalocyanines (Pc) is described. The preparation of Pc-based oligomers and was accomplished by means of Knoevenagel and Wadsworth-Horner-Emmons reactions, respectively. Diformylphthalocyanine was employed as a monomer in these reactions, thus providing functionalised conjugated oligomers upon reaction with the corresponding co-monomers, and . Photophysical and electrochemical experiments have been carried out with both oligomeric derivatives, revealing excited state interactions such as transduction of singlet excited state energy.

10.
Chemistry ; 15(20): 5130-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19338034

RESUMO

A series of unsymmetrical zinc phthalocyanines bearing an anchoring carboxylic function linked to the phthalocyanine ring through different spacers were designed for dye-sensitised solar cells (DSSC). The modification of the spacer group allows not only a variable distance between the dye and the nanocrystalline TiO(2), but also a distinct orientation of the phthalocyanine on the semiconductor surface. The photovoltaic data show that the nature of the spacer group plays a significant role in the electron injection from the photo-excited dye into the nanocrystalline TiO(2) semiconductor, the recombination rates and the efficiency of the cells. The incident monochromatic photon-to-current conversion efficiency (IPCE) for phthalocyanines bearing an insulating spacer is as low as 9%, whereas for those with a conducting spacer an outstanding IPCE 80% was obtained.

11.
Chemistry ; 14(30): 9261-73, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18729114

RESUMO

Stable photoactive organogels were successfully prepared by a two-step sequence involving: 1) formation of thermoreversible organogels by use of a combination of low-molecular-weight organogelators (LMOGs) and ZnII-phthalocyanine (ZnII-Pc) moieties containing complementary organogelator structures, and 2) strength enhancement of the gels by in situ cross-linking with the aid of CuI-catalysed azide-alkyne [3+2] cycloadditions (CuAACs). The optimum click reaction was carried out between a flexible C6 aliphatic diazide and a suitable dialkyne (molar ratio 1:1) added in a low proportion relative to the organogelator system [LMOG+ZnIIPc]. The dialkyne unit was incorporated into a molecule resembling the LMOGs structure in such a way that it could also participate in the self-assembly of [LMOG+ZnIIPc]. The significant compatibility of the multicomponent photoactive organogels towards this strengthening through CuAACs allowed their sol-to-gel transition temperatures (Tgel) to be enhanced by up to 15 degrees C. The Tgel values estimated by the "inverse flow method" were in good agreement with the values obtained by differential scanning calorimetry (DSC). Rheological measurements confirmed the viscoelastic, rigid, and brittle natures of all Pc-containing gels. Transmission and scanning electron microscopy (TEM, SEM) and atomic force microscopy (AFM) revealed the fibrilar nature of the gels and the morphological changes upon cross-linking by CuAAC. Emission of a red luminescence from the dry nanoscale fibrous structure-due to the self-assembly of the Pc-containing compounds in the organogel fibres-was directly observed by confocal laser scanning microscopy (CLSM). The optical properties were studied by UV/Vis and fluorescence spectroscopy. Fluorescence, Fourier-transform infrared (FTIR) and circular dichroism (CD) measurements were also carried out to complete the physicochemical characterization of selected gels. As a proof of concept, two different organogelators (cholesterol- and diamide-based LMOGs) were successfully used to validate the general strategy.


Assuntos
Reagentes de Ligações Cruzadas/química , Géis/química , Indóis/química , Nanoestruturas/química , Alcinos/química , Azidas/química , Catálise , Cobre/química , Isoindóis , Mecânica , Reologia , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição , Zinco/química
12.
ChemSusChem ; 1(1-2): 97-102, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18605671

RESUMO

A novel dimeric phthalocyanine-C60 nanoconjugate, consisting of a bisphthalocyanine core to which two fullerenes are attached, has been prepared. The synthetic strategy implemented the preparation of a diformyl butadiynyl-bridged bisphthalocynaninato-zinc(II) complex by means of palladium-catalyzed cross-coupling reactions and subsequent dipolar cycloaddition reactions. Photophysical experiments confirm that an intramolecular electron transfer, namely, from the photoexcited ZnPc moiety to the electron-accepting C60 unit, governs the overall photoreactivity of the nanoconjugate. Through-space charge-transfer interactions facilitated by the close proximity of the ZnPc and the C60 moieties play a decisive role in determining the lifetimes of the charge-separated state which range from 10(-10) to 10(-9) seconds.


Assuntos
Fulerenos/química , Indóis/química , Nanopartículas/química , Absorção , Transporte de Elétrons , Isoindóis , Modelos Moleculares , Conformação Molecular , Fotoquímica , Espectrometria de Fluorescência
13.
Chemistry ; 14(12): 3765-75, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18297668

RESUMO

A series of three novel ZnPc-C60 conjugates (Pc=phthalocyanine) 1 a-c bearing different spacers (single, double, and triple bond) between the two electroactive moieties was synthesized and compared to that of ZnPc-C60 conjugate 2, in which the two electroactive moieties are linked directly. The synthetic strategy- towards the preparation of 1 a-c- involved palladium-catalyzed cross-coupling reactions over a monoiodophthalocyanine precursor 4 to introduce the corresponding spacer, and subsequent dipolar cycloaddition reaction to C60. Detailed photophysical investigations of 1 a-c and 2 prompted an intramolecular electron transfer that evolves from the photoexcited ZnPc to the electron-accepting C60. In particular, with the help of femtosecond laser photolysis charge separation was indeed confirmed as the major deactivation channel. Complementary time-dependent density functional calculations supported the spectral assignment, namely, the spectral identity of the ZnPc(*+) radical cation and the C60 (*-) radical anion as seen in the differential absorption spectra. The lifetimes of the correspondingly formed radical ion-pair states depend markedly on the solvent polarity: they increase as polarity decreases. Similarly, although to a lesser extent, the nature of the linker impacts the lifetime of the radical ion-pair states. In general, the lifetimes of these states tend to be shortest in the system that lacks any spacer at all (2), whereas the longest lifetimes were found in the system that carries the triple-bond spacer (1 a).


Assuntos
Fulerenos/química , Indóis/química , Luz , Compostos Organometálicos/síntese química , Compostos Organometálicos/efeitos da radiação , Zinco/química , Simulação por Computador , Elétrons , Radicais Livres/síntese química , Radicais Livres/química , Radicais Livres/efeitos da radiação , Isoindóis , Modelos Químicos , Estrutura Molecular , Compostos Organometálicos/química , Fotoquímica , Teoria Quântica , Estereoisomerismo
14.
J Inorg Biochem ; 102(3): 388-94, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18164762

RESUMO

Two functionalized phthalocyanine-based chromophore systems having two iodophthalocyaninatozinc(II) rings bound together through a butadiynyl linkage 1a,b have been synthesized by oxidative Eglinton coupling of the corresponding monomer, and fully characterized. The electronic characteristics of these extensively linearly pi-conjugated compounds were modulated by the introduction of different peripheral substituents into the phthalocyanine moieties and investigated by UV-visible spectroscopy. The reactivity of the two iodo substituents was explored to prepare a novel bisphthalocyanine containing two ethynylphenyl moieties, thus pointing out the possibility of incorporating other electro and/or photoactive moieties in the BisPc system, taking advantage of the iodo-functionalization.


Assuntos
Indóis/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Isoindóis , Estrutura Molecular , Espectrofotometria Ultravioleta
15.
Org Lett ; 8(23): 5187-90, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17078674

RESUMO

[Structure: see text] A novel covalently linked bis([60]fullerene)-phthalocyanine triad is reported, exhibiting long-lived photoinduced charge separation both in solution and in the solid state. The first demonstration of a working solar cell using triad 1 as the active material is also presented.

16.
J Am Chem Soc ; 128(39): 12674-84, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17002361

RESUMO

We have prepared three isomeric donor-acceptor systems, in which two phthalocyanine (Pc) units have been attached to the 1-,5- (1a), 1-,8- (1b), or 2-,6- (1c) positions of a central anthraquinone (AQ) moiety, leading to packed (1b) or extended (1a and 1c) topologies. The electronic interactions between the donor and the acceptor in the ground state or in the excited states have been studied by different electrochemical and photophysical techniques. Due to the markedly different topologies, we have been able to modify these interactions at the intramolecular level and, by a proper choice of the solvent environment, at the intermolecular level within aggregates. In triad 1b, the ZnPc units are forced to pi-stack cofacially and out of the plane of the AQ ring. Consequently, this molecule shows strong inter-Pc interactions that give rise to intramolecular excitonic coupling but a relatively small electronic communication with the AQ acceptor through the vinyl spacers. On the contrary, the 1-,5- or 2-,6-connections of triads 1a and 1c allow for an efficient pi-conjugation between the active units that extends over the entire planar system. These two molecules tend to aggregate in aromatic solvents by pi-pi stacking, giving rise to J-type oligomers. Photoexcitation of the Pc units of 1a-c results in the formation of the Pc.+-AQ.- charge transfer state. We have demonstrated that the kinetics of these electron transfer reactions is greatly dependent on the aggregation status of the triads.

17.
Chem Commun (Camb) ; (29): 3107-9, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16855701

RESUMO

An ethynyl-substituted nickel(II) phthalocyanine has been synthesised and its thermotropic properties studied; optical microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques revealed an unusual mesomorphic behaviour observed for the first time in phthalocyanine systems where each disk of the hexagonal columnar mesophase is formed by two ethynyl-substituted phthalocyanine units.

18.
J Am Chem Soc ; 127(16): 5811-3, 2005 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15839678

RESUMO

Induction of self-organization between zinc phthalocyanine (ZnPc) and C60 moieties in a novel amphiphilic ZnPc-C60 salt results in uniformly nanostructured 1-D nanotubules. Their photoreactivity, in terms of ultrafast charge separation (i.e., approximately 1012 s-1) and ultraslow charge recombination (i.e., approximately 103 s-1), is remarkable. In addition, the observed ZnPc*+-C60*- lifetime of 1.4 ms implies, relative to that of the monomeric ZnPc-C60 ( approximately 3 ns), an impressive stabilization of 6 orders of magnitude.

20.
J Org Chem ; 68(22): 8635-42, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-14575496

RESUMO

A new series of multicomponent ZnPc-Ru(bpy)(3) systems, 1a-c, consisting of a zinc-phthalocyanine linked through conjugated and/or nonconjugated connections to a ruthenium(II) tris(bipyridine) complex, has been synthesized. The ruthenium complexes 1a-c were prepared from phthalocyanines 2a-c, bearing a 4-substituted-2,2'-bipyridine ligand by treatment with [Ru(bpy)2Cl2].2H2O. Different synthetic strategies have been devised to prepare the corresponding dyad precursors (2a-c). Compound 2a, for example, with an ethenyl bridge, was synthesized by statistical condensation of 4-tert-butylphthalonitrile and 5-[(E)-2-(3,4-dicyanophenyl)ethenyl]-2,2'-bipyridine (3) in the presence of zinc chloride. Compounds 2b and 2c, having, respectively, an amide or an ethynyl bridge, were prepared following a different synthetic approach. The method involves the coupling of an appropriate 5-substituted-2,2'-bipyridine to an unsymmetrical phthalocyanine suitably functionalized with an amino (4) or an ethynyl group (5). The photophysical properties of the dyads that are ZnPc-Ru(bpy)3 1a-c and related model compounds have been determined by a variety of steady-state (i.e., fluorescence) and time-resolved methods (i.e., fluorescence and transient absorption). Clearly, intramolecular electronic interactions between the two subunits dominate the photophysical events following the initial excitation of either chromophore. These intramolecular interactions lead, in the case of photoexcited ZnPc, to faster intersystem crossing kinetics compared to a ZnPc reference, while photoexcited [Ru(bpy)3]2+) undergoes a rapid and efficient transduction of triplet excited-state energy to the Pc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...