Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676044

RESUMO

This research paper delves into the effectiveness and impact of behavior change techniques fostered by information technologies, particularly wearables and Internet of Things (IoT) devices, within the realms of engineering and computer science. By conducting a comprehensive review of the relevant literature sourced from the Scopus database, this study aims to elucidate the mechanisms and strategies employed by these technologies to facilitate behavior change and their potential benefits to individuals and society. Through statistical measurements and related works, our work explores the trends over a span of two decades, from 2000 to 2023, to understand the evolving landscape of behavior change techniques in wearable and IoT technologies. A specific focus is placed on a case study examining the application of behavior change techniques (BCTs) for monitoring vital signs using wearables, underscoring the relevance and urgency of further investigation in this critical intersection of technology and human behavior. The findings shed light on the promising role of wearables and IoT devices for promoting positive behavior modifications and improving individuals' overall well-being and highlighting the need for continued research and development in this area to harness the full potential of technology for societal benefit.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos
2.
Sensors (Basel) ; 19(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897710

RESUMO

The emergence of modern technologies, such as Wireless Sensor Networks (WSNs), the Internet-of-Things (IoT), and Machine-to-Machine (M2M) communications, involves the use of batteries, which pose a serious environmental risk, with billions of batteries disposed of every year. However, the combination of sensors and wireless communication devices is extremely power-hungry. Energy Harvesting (EH) is fundamental in enabling the use of low-power electronic devices that derive their energy from external sources, such as Microbial Fuel Cells (MFC), solar power, thermal and kinetic energy, among others. Plant Microbial Fuel Cell (PMFC) is a prominent clean energy source and a step towards the development of self-powered systems in indoor and outdoor environments. One of the main challenges with PMFCs is the dynamic power supply, dynamic charging rates and low-energy supply. In this paper, a PMFC-based energy harvester system is proposed for the implementation of autonomous self-powered sensor nodes with IoT and cloud-based service communication protocols. The PMFC design is specifically adapted with the proposed EH circuit for the implementation of IoT-WSN based applications. The PMFC-EH system has a maximum power point at 0.71 V, a current density of 5 mA cm - 2 , and a power density of 3.5 mW cm - 2 with a single plant. Considering a sensor node with a current consumption of 0.35 mA, the PMFC-EH green energy system allows a power autonomy for real-time data processing of IoT-based low-power WSN systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA