Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410634, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008635

RESUMO

A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shape1s and properties. However, the lack of well-defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation-assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme-triggered assembly (ETA) for the on-demand formation of well-defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo-electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non-natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures.

2.
Bioorg Chem ; 113: 104987, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34022444

RESUMO

The stabilization of helical structures by peptide stapling approaches is now a mature technology capable to provide a variety of biomedical applications. Recently, it was shown that multicomponent macrocyclization is not only an effective way to introduce conformational constraints but it also allows to incorporate additional functionalities to the staple moiety in a one-pot process. This work investigates the scope of the double Ugi multicomponent stapling approach in its capacity to produce helical peptides from unstructured sequences. For this, three different stapling combinations were implemented and the CD spectra of the cyclic peptides were measured to determine the effect of the multicomponent macrocyclization on the resulting secondary structure. A new insight into some structural factors influencing the helicity type and content is provided, along with new prospects on the utilization of this methodology to diversify the molecular tethers linking the amino acid side chains.


Assuntos
Peptídeos/síntese química , Dicroísmo Circular , Peptídeos/química , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...