Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nucleus ; 8(2): 205-221, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28068183

RESUMO

The role of the nucleolus and autophagy in maintenance of nuclear integrity is poorly understood. In addition, the mechanisms of nuclear destruction in cancer cells senesced after conventional chemotherapy are unclear. In an attempt to elucidate these issues, we studied teratocarcinoma PA1 cells treated with Etoposide (ETO), focusing on the nucleolus. Following treatment, most cells enter G2 arrest, display persistent DNA damage and activate p53, senescence, and macroautophagy markers. 2-5 µm sized nucleolar aggresomes (NoA) containing fibrillarin (FIB) and damaged rDNA, colocalized with ubiquitin, pAMPK, and LC3-II emerge, accompanied by heterochromatin fragments, when translocated perinuclearly. Microscopic counts following application of specific inhibitors revealed that formation of FIB-NoA is dependent on deficiency of the ubiquitin proteasome system coupled to functional autophagy. In contrast, the accompanying NoAs release of pericentric heterochromatin, which exceeds their frequency, is favored by debilitation of autophagic flux. Potential survivors release NoA in the cytoplasm during rare mitoses, while exit of pericentric fragments often depleted of H3K9Me3, with or without encompassing by NoA, occurs through the nucleolar protrusions and defects of the nuclear envelope. Foci of LC3-II are accumulated in the nucleoli undergoing cessation of rDNA transcription. As an origin of heterochromatin fragmentation, the unscheduled DNA synthesis and circular DNAs were found in the perinucleolar heterochromatin shell, along with activation and retrotransposition of ALU elements, colocalized with 45S rDNA in NoAs. The data indicate coordination of the basic nucleolar function with autophagy regulation in maintenance of the integrity of the nucleolus associated domains secured by inactivity of retrotransposons.


Assuntos
Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Heterocromatina/efeitos dos fármacos , Heterocromatina/metabolismo , Mutagênicos/toxicidade , Autofagia/efeitos dos fármacos , Autofagia/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Nucléolo Celular/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Etoposídeo/toxicidade , Humanos , Retroelementos/efeitos dos fármacos , Retroelementos/genética
2.
Oncotarget ; 7(46): 75235-75260, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27655693

RESUMO

The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer.


Assuntos
Epistasia Genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Poliploidia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proteínas de Transporte , Feminino , Dosagem de Genes , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Metabolômica , Camundongos , Modelos Biológicos , Miocárdio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/genética , Placenta/metabolismo , Gravidez , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estresse Fisiológico , Fator de Crescimento Transformador beta/metabolismo
3.
Aging (Albany NY) ; 8(7): 1330-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27295498

RESUMO

Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts fromPINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine.


Assuntos
Linhagem da Célula/fisiologia , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Células-Tronco/metabolismo , Animais , Reprogramação Celular/fisiologia , Metabolismo Energético , Fibroblastos/citologia , Fibroblastos/metabolismo , Metabolômica , Camundongos , Camundongos Knockout , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Células-Tronco/citologia
4.
Cell Cycle ; 14(18): 2969-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26102294

RESUMO

Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of "stemness." This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence.


Assuntos
Senescência Celular , Etoposídeo/farmacologia , Fator 3 de Transcrição de Octâmero/fisiologia , Estresse Fisiológico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
5.
Oncoscience ; 2(1): 3-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821840

RESUMO

Recently, it has become clear that the complexity of cancer biology cannot fully be explained by somatic mutation and clonal selection. Meanwhile, data have accumulated on how cancer stem cells or stemloids bestow immortality on tumour cells and how reversible polyploidy is involved. Most recently, single polyploid tumour cells were shown capable of forming spheroids, releasing EMT-like descendents and inducing tumours in vivo. These data refocus attention on the centuries-old embryological theory of cancer. This review attempts to reconcile seemingly conflicting data by viewing cancer as a pre-programmed phylogenetic life-cycle-like process. This cycle is apparently initiated by a meiosis-like process and driven as an alternative to accelerated senescence at the DNA damage checkpoint, followed by an asexual syngamy event and endopolyploid-type embryonal cleavage to provide germ-cell-like (EMT) cells. This cycle is augmented by genotoxic treatments, explaining why chemotherapy is rarely curative and drives resistance. The logical outcome of this viewpoint is that alternative treatments may be more efficacious - either those that suppress the endopolyploidy-associated 'life cycle' or, those that cause reversion of embryonal malignant cells into benign counterparts. Targets for these opposing strategies are components of the same molecular pathways and interact with regulators of accelerated senescence.

6.
Cell Cycle ; 13(7): 1132-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24553122

RESUMO

Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Metformina/farmacologia , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia
7.
PLoS One ; 8(10): e77281, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124614

RESUMO

Tumors are heterogeneous at the cellular level where the ability to maintain tumor growth resides in discrete cell populations. Floating sphere-forming assays are broadly used to test stem cell activity in tissues, tumors and cell lines. Spheroids are originated from a small population of cells with stem cell features able to grow in suspension culture and behaving as tumorigenic in mice. We tested the ability of eleven common breast cancer cell lines representing the major breast cancer subtypes to grow as mammospheres, measuring the ability to maintain cell viability upon serial non-adherent passage. Only MCF7, T47D, BT474, MDA-MB-436 and JIMT1 were successfully propagated as long-term mammosphere cultures, measured as the increase in the number of viable cells upon serial non-adherent passages. Other cell lines tested (SKBR3, MDA-MB-231, MDA-MB-468 and MDA-MB-435) formed cell clumps that can be disaggregated mechanically, but cell viability drops dramatically on their second passage. HCC1937 and HCC1569 cells formed typical mammospheres, although they could not be propagated as long-term mammosphere cultures. All the sphere forming lines but MDA-MB-436 express E-cadherin on their surface. Knock down of E-cadherin expression in MCF-7 cells abrogated its ability to grow as mammospheres, while re-expression of E-cadherin in SKBR3 cells allow them to form mammospheres. Therefore, the mammosphere assay is suitable to reveal stem like features in breast cancer cell lines that express E-cadherin.


Assuntos
Neoplasias da Mama/genética , Caderinas/genética , Expressão Gênica , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Esferoides Celulares , Células Tumorais Cultivadas
8.
Cell Cycle ; 12(22): 3471-7, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24107627

RESUMO

The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka's nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E 2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E 2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E 2 signaling that leads to nuclear phospho-Ser118-ERα, which ultimately exacerbates genomic ER signaling in response to E 2. Because E 2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140, which targets SOX2, the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator, SOX2, and the local and systemic ability of E 2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.


Assuntos
Neoplasias da Mama/metabolismo , Reprogramação Celular , Estradiol/fisiologia , Estrogênios/fisiologia , Células-Tronco Neoplásicas/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Fosforilação , Receptores de Progesterona/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais
9.
Sci Rep ; 3: 2560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23994953

RESUMO

Using non-small cell lung carcinoma (NSCLC) cells harboring the erlotinib-sensitizing Epidermal Growth Factor Receptor (EGFR) exon 19 mutation delE746-A750, we developed erlotinib-refractory derivatives in which hyperactive Insulin-like Growth Factor-1 Receptor (IGF-1R) signaling associated with enrichment in epithelial-to-mesenchymal transition (EMT)-related morphological and transcriptional features. We then explored whether an IGF-1R/EMT crosstalk was sufficient to promote erlotinib refractoriness in the absence of second-site EGFR mutations, MET and AXL hyperactivation. Transforming Growth Factor-beta1 (TGFß1)-induced mesenchymal trans-differentiation was sufficient to impede erlotinib functioning in the presence of drug-sensitive delE746-A750 EGFR mutation. Pharmacological blockade of IGF-1R fully prevented the TGFß1's ability to activate an EMT protein signature [E-cadherin low/vimentin high]. The sole presence of erlotinib was capable of rapidly activate an IGF-1R-dependent, vimentin-enriched mesenchymal-like phenotype in delE746-A750-mutated epithelial cells. Even if transient, NSCLC cells' intrinsic plasticity to undergo crosstalk between IGF-1R and EMT signaling pathways can sufficiently eliminate the erlotinib-sensitizing effect of highly prevalent EGFR mutations and suggests the urgent need for dual IGF-1R/EMT-targeting strategies to circumvent erlotinib resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Transição Epitelial-Mesenquimal/fisiologia , Genes erbB-1/genética , Quinazolinas/administração & dosagem , Receptor IGF Tipo 1/metabolismo , Deleção de Sequência/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cloridrato de Erlotinib , Éxons/genética , Humanos , Resultado do Tratamento
10.
Sci Rep ; 3: 2469, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23965851

RESUMO

Autophagy may control the de novo refractoriness of HER2 gene-amplified breast carcinomas to the monoclonal antibody trastuzumab (Herceptin). Tumor cells originally obtained from a patient who rapidly progressed on trastuzumab ab initio display increased cellular levels of the LC3-II protein--a finding that correlates with increased numbers of autophagosomes--and decreased levels of the autophagy receptor p62/SQSTM1, a protein selectively degraded by autophagy. Trastuzumab-refractory cells are in a state of "autophagy addiction" because genetic ablation of autophagy-specific genes (ATG8, ATG5, ATG12) notably reduces intrinsic refractoriness to trastuzumab. When the anti-malarial lysosomotropic drug chloroquine impedes autophagic resolution of the accumulation of autophagolysosomes formed in the presence of trastuzumab, cells commit to die by apoptosis. Accordingly, combination treatment with trastuzumab and chloroquine radically suppresses tumor growth by > 90% in a tumor xenograft completely refractory to trastuzumab. Adding chloroquine to trastuzumab-based regimens may therefore improve outcomes among women with autophagy-addicted HER2-positive breast cancer.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cloroquina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/genética , Animais , Antimaláricos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Camundongos , Fagossomos/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Trastuzumab , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 3: 2459, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23963283

RESUMO

The flavolignan silibinin was studied for its ability to restore drug sensitivity to EGFR-mutant NSCLC xenografts with epithelial-to-mesenchymal transition (EMT)-driven resistance to erlotinib. As a single agent, silibinin significantly decreased the tumor volumes of erlotinib-refractory NSCLC xenografts by approximately 50%. Furthermore, the complete abrogation of tumor growth was observed with the co-treatment of erlotinib and silibinin. Silibinin fully reversed the EMT-related high miR-21/low miR-200c microRNA signature and repressed the mesenchymal markers SNAIL, ZEB, and N-cadherin observed in erlotinib-refractory tumors. Silibinin was sufficient to fully activate a reciprocal mesenchymal-to-epithelial transition (MET) in erlotinib-refractory cells and prevent the highly migratogenic phenotype of erlotinib-resistant NSCLC cells. Given that the various mechanisms of resistance to erlotinib result from EMT, regardless of the EGFR mutation status, a water-soluble, silibinin-rich milk thistle extract might be a suitable candidate therapy for upcoming clinical trials aimed at preventing or reversing NSCLC progression following erlotinib treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/metabolismo , Quinazolinas/administração & dosagem , Silimarina/administração & dosagem , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Silibina , Resultado do Tratamento
12.
Food Chem Toxicol ; 60: 360-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23916468

RESUMO

Silibinin is the primary active constituent of a crude extract (silymarin) from milk thistle plant (Silybum marianum) seeds. We explored the ability of an oral milk thistle extract formulation that was enriched with a water-soluble form of silibinin complexed with the amino-sugar meglumine to inhibit the growth of non-small-cell lung carcinoma (NSCLC) mouse xenografts. As a single agent, oral silibinin meglumine notably decreased the overall volumes of NSCLC tumors as efficiently as did the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Concurrent treatment with silibinin meglumine impeded the regrowth of gefitinib-unresponsive tumors, resulting in drastic tumor growth prevention. Because the epithelial-to-mesenchymal transition (EMT) is required by a multiplicity of mechanisms of resistance to EGFR TKIs, we evaluated the ability of silibinin meglumine to impede the EMT in vitro and in vivo. Silibinin-meglumine efficiently prevented the loss of markers associated with a polarized epithelial phenotype as well as the de novo synthesis of proteins associated with the mesenchymal morphology of transitioning cells. Our current findings with this non-toxic, orally active, and water-soluble silibinin formulation might facilitate the design of clinical trials to test the administration of silibinin meglumine-containing injections, granules, or beverages in combination with EGFR TKIs in patients with EGFR-mutated NSCLC.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Meglumina/farmacologia , Silybum marianum/química , Silimarina/farmacologia , Administração Oral , Animais , Antioxidantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Gefitinibe , Humanos , Meglumina/química , Camundongos , Camundongos Endogâmicos NOD , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Sementes/química , Silibina , Silimarina/química , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Cycle ; 12(18): 3109-24, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23974095

RESUMO

Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg's theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka's stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR--the master switch of cellular catabolism and anabolism--in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1-60, and TRA-1-81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44(+) and ALDEFLUOR-stained ALDH(bright) cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic α 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep cells. Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway.


Assuntos
Reprogramação Celular , Células-Tronco Neoplásicas/citologia , Fatores de Transcrição SOXB1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama , Regulação para Baixo , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinesinas/genética , Cinesinas/metabolismo , Fator 4 Semelhante a Kruppel , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/genética , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
15.
Cell Cycle ; 12(8): 1166-79, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23549172

RESUMO

When fighting cancer, knowledge on metabolism has always been important. Today, it matters more than ever. The restricted cataloging of cancer genomes is quite unlikely to achieve the task of curing cancer, unless it is integrated into metabolic networks that respond to and influence the constantly evolving cancer stem cell (CSC) cellular states. Once the genomic era of carcinogenesis had pushed the 1920s Otto Warburg's metabolic cancer hypothesis into obscurity for decades, the most recent studies begin to support a new developing paradigm, in which the molecular logic behind the conversion of non-CSCs into CSCs can be better understood in terms of the "metabolic facilitators" and "metabolic impediments" that operate as proximate openings and roadblocks, respectively, for the transcriptional events and signal transduction programs that ultimately orchestrate the intrinsic and/or microenvironmental paths to CSC cellular states. Here we propose that a profound understanding of how human carcinomas install a proper "Warburg effect version 2.0" allowing them to "run" the CSCs' "software" programs should guide a new era of metabolo-genomic-personalized cancer medicine. By viewing metabolic reprogramming of CSCs as an essential characteristic that allows dynamic, multidimensional and evolving cancer populations to compete successfully for their expansion on the organism, we now argue that CSCs bioenergetics might be another cancer hallmark. A definitive understanding of metabolic reprogramming in CSCs may complement or to some extent replace, the 30-y-old paradigm of targeting oncogenes to treat human carcinomas, because it can be possible to metabolically create non-permissive or "hostile" metabotypes to prevent the occurrence of CSC cellular states with tumor- and metastasis-initiating capacity.


Assuntos
Transformação Celular Neoplásica/metabolismo , Descoberta de Drogas/tendências , Metabolismo Energético/fisiologia , Oncologia/tendências , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Respiração Celular/fisiologia , Glicólise , Humanos
16.
Autophagy ; 9(6): 830-49, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23486312

RESUMO

Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.


Assuntos
Autofagia , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Mitofagia , Modelos Biológicos
17.
Cell Cycle ; 12(4): 555-78, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23370395

RESUMO

Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated ß-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.


Assuntos
Envelhecimento/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Iridoides/farmacologia , Longevidade/efeitos dos fármacos , Óleos de Plantas/química , Polifenóis/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Envelhecimento/genética , Animais , Transformação Celular Neoplásica/genética , Dieta Mediterrânea , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hormese , Humanos , Iridoides/isolamento & purificação , Longevidade/genética , Azeite de Oliva , Polifenóis/isolamento & purificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
18.
Cell Cycle ; 12(2): 207-18, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23287468

RESUMO

Induced pluripotent stem (iPS) cells share some basic properties, such as self-renewal and pluripotency, with cancer cells, and they also appear to share several metabolic alterations that are commonly observed in human tumors. The cancer cells' glycolytic phenotype, first reported by Otto Warburg, is necessary for the optimal routing of somatic cells to pluripotency. However, how iPS cells establish a Warburg-like metabolic phenotype and whether the metabolic pathways that support the bioenergetics of iPS cells are produced by the same mechanisms that are selected during the tumorigenic process remain largely unexplored. We recently investigated whether the reprogramming-competent metabotype of iPS cells involves changes in the activation/expression status of the H(+)-ATPase, which is a core component of mitochondrial oxidative phosphorylation that is repressed at both the activity and protein levels in human carcinomas, and of the lipogenic switch, which refers to a marked overexpression and hyperactivity of the acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN) lipogenic enzymes that has been observed in nearly all examined cancer types. A comparison of a starting population of mouse embryonic fibroblasts and their iPS cell progeny revealed that somatic cell reprogramming involves a significant increase in the expression of ATPase inhibitor factor 1 (IF1), accompanied by extremely low expression levels of the catalytic ß-F1-ATPase subunit. The pharmacological inhibition of ACACA and FASN activities markedly decreases reprogramming efficiency, and ACACA and FASN expression are notably upregulated in iPS cells. Importantly, iPS cells exhibited a significant intracellular accumulation of neutral lipid bodies; however, these bodies may be a reflection of intense lysosomal/autophagocytic activity rather than bona fide lipid droplet formation in iPS cells, as they were largely unresponsive to pharmacological modulation of PPARgamma and FASN activities. The AMPK agonist metformin, which endows somatic cells with a bioenergetic infrastructure that is protected against reprogramming, was found to drastically elongate fibroblast mitochondria, fully reverse the high IF1/ß-F1-ATPase ratio and downregulate the ACACA/FASN lipogenic enzymes in iPS cells. The mitochondrial H(+)-ATP synthase and the ACACA/FASN-driven lipogenic switch are newly characterized as instrumental metabolic events that, by coupling the Warburg effect to anabolic metabolism, enable de-differentiation during the reprogramming of somatic cells to iPS cells.


Assuntos
Desdiferenciação Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipogênese/fisiologia , Redes e Vias Metabólicas/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Ácido Graxo Sintases/metabolismo , Fibroblastos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas/metabolismo , Proteína Inibidora de ATPase
19.
Cell Cycle ; 12(2): 225-45, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255137

RESUMO

High rates of inherent primary resistance to the humanized monoclonal antibody trastuzumab (Herceptin) are frequent among HER2 gene-amplified breast carcinomas in both metastatic and adjuvant settings. The clinical efficacy of trastuzumab is highly correlated with its ability to specifically and efficiently target HER2-driven populations of breast cancer stem cells (CSCs). Intriguingly, many of the possible mechanisms by which cancer cells escape trastuzumab involve many of the same biomarkers that have been implicated in the biology of CS-like tumor-initiating cells. In the traditional, one-way hierarchy of CSCs in which all cancer cells descend from special self-renewing CSCs, HER2-positive CSCs can occur solely by self-renewal. Therefore, by targeting CSC self-renewal and resistance, trastuzumab is expected to induce tumor shrinkage and further reduce breast cancer recurrence rates when used alongside traditional therapies. In a new, alternate model, more differentiated non-stem cancer cells can revert to trastuzumab-refractory, CS-like cells via the activation of intrinsic or microenvironmental paths-to-stemness, such as the epithelial-to-mesenchymal transition (EMT). Alternatively, stochastic transitions of trastuzumab-responsive CSCs might also give rise to non-CSC cellular states that lack major attributes of CSCs and, therefore, can remain "hidden" from trastuzumab activity. Here, we hypothesize that a better understanding of the CSC/non-CSC social structure within HER2-overexpressing breast carcinomas is critical for trastuzumab-based treatment decisions in the clinic. First, we decipher the biological significance of CSC features and the EMT on the molecular effects and efficacy of trastuzumab in HER2-positive breast cancer cells. Second, we reinterpret the genetic heterogeneity that differentiates trastuzumab-responders from non-responders in terms of CSC cellular states. Finally, we propose that novel predictive approaches aimed at better forecasting early tumor responses to trastuzumab should identify biological determinants that causally underlie the intrinsic flexibility of HER2-positive CSCs to "enter" into or "exit" from trastuzumab-sensitive states. An accurate integration of CSC cellular states and EMT-related biomarkers with the currently available breast cancer molecular taxonomy may significantly improve our ability to make a priori decisions about whether patients belonging to HER2 subtypes differentially enriched with a "mesenchymal transition signature" (e.g., luminal/HER2 vs. basal/HER2) would distinctly benefit from trastuzumab-based therapy ab initio.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinoma Basocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Células-Tronco Neoplásicas/fisiologia , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Análise Serial de Proteínas , Trastuzumab
20.
Mediators Inflamm ; 2013: 953841, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24453432

RESUMO

Excessive energy management leads to low-grade, chronic inflammation, which is a significant factor predicting noncommunicable diseases. In turn, inflammation, oxidation, and metabolism are associated with the course of these diseases; mitochondrial dysfunction seems to be at the crossroads of mutual relationships. The migration of immune cells during inflammation is governed by the interaction between chemokines and chemokine receptors. Chemokines, especially C-C-chemokine ligand 2 (CCL2), have a variety of additional functions that are involved in the maintenance of normal metabolism. It is our hypothesis that a ubiquitous and continuous secretion of CCL2 may represent an animal model of low-grade chronic inflammation that, in the presence of an energy surplus, could help to ascertain the afore-mentioned relationships and/or to search for specific therapeutic approaches. Here, we present preliminary data on a mouse model created by using targeted gene knock-in technology to integrate an additional copy of the CCl2 gene in the Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in embryonic stem cells. Short-term dietary manipulations were assessed and the findings include metabolic disturbances, premature death, and the manipulation of macrophage plasticity and autophagy. These results raise a number of mechanistic questions for future study.


Assuntos
Quimiocina CCL2/fisiologia , Ingestão de Energia , Inflamação/etiologia , Adipócitos/patologia , Animais , Autofagia , Peso Corporal , Quimiocina CCL2/genética , Citocinas/genética , Dieta Hiperlipídica , Glucose/metabolismo , Metabolismo dos Lipídeos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Serina-Treonina Quinases TOR/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...