Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 266(Pt 3): 115181, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683092

RESUMO

The pressure on natural water resources associated with increasing water scarcity highlights the value of using reclaimed water through the development of efficient and environmentally friendly treatment technologies. In this work, the use of magnetic nanoparticles in photo-Fenton catalysis for water disinfection was considered to inactivate natural enteric bacteria present in municipal wastewater effluents under white light and neutral pH. The most recommended ranges were evaluated in key variables such as the loading and composition of nanoparticles (NPs), hydrogen peroxide (H2O2) concentration, the light source (UV and visible) and treatment time were evaluated in wastewater disinfection expressed in terms of total coliforms and Escherichia coli colony forming units (CFU). The magnetic separation of NPs allowed the disinfection process to be carried out in different cycles, facilitating the recovery of the nanocatalyst and avoiding its discharge with the treated effluent.


Assuntos
Microbioma Gastrointestinal , Purificação da Água , Catálise , Desinfecção , Compostos Férricos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Luz Solar , Águas Residuárias/análise
2.
RSC Adv ; 10(16): 9549-9562, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35497222

RESUMO

The annealing temperature (T a) dependence of the structural, morphological, electrical and dielectric properties of ZnS thin films was investigated. In this work, we consider the as-deposited and annealed ZnS thin films at different temperatures. The as-deposited films were amorphous in nature. However, the films annealed at T a ≥ 673 K, exhibited a hexagonal structure with (002) preferential orientation. The post annealing caused an improvement in crystallinity. The best one was observed at T a = 723 K. Grain size increased from 7 nm to 25 nm as annealing temperature was increased from 673 K to 723 K. The surface of annealed samples is homogenous and uniform and the rms roughness is dependent on the annealing temperature: it increases with temperature within the range 5-50 nm. The film electrical conductance is found to be dependent on frequency measurement and annealing temperature: the dc conductance exhibits semi-conductor behavior for all ZnS films over the explored range of temperature and the conductance was found to enhance with increasing annealing temperature up to 623 K. In addition, it was observed that the highest conductance and lowest activation energy of ZnS films were obtained at an annealing temperature of 623 K. The mechanism of alternating current ac conductance can be reasonably explained in terms of the overlapping-large polaron tunnelling (OLPT) model for samples annealed at 623 K and 673 K. To our knowledge, this conduction mechanism was rarely found in chalcogenide materials. A significant change of Nyquist plot with annealing temperature was noted permitting the correlation between the microstructure and its electrical properties. The impedance analysis investigated that the relaxation process is well pronounced for the both annealed films at 623 K and 673 K. The dielectric behavior was associated to the polarization effect, an improvement on the dielectric constant ε' and dielectric loss ε'' with annealing was noticed.

3.
RSC Adv ; 10(32): 18841-18852, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35518296

RESUMO

This work reports the thickness effect on the sensing performances of In2S3 material for some Volatile Organic Compounds (VOCs). In2S3 films were deposited on glass substrates by the spray pyrolysis technique. Different samples were prepared via changing the spray time in the range of 10-90 min. The film thickness varies from 0.8 µm to 6.1 µm. The X-ray diffraction results demonstrate that the In2S3 films are polycrystalline in nature and exhibit a cubic structure. Additionally, Scanning Electron Microscopy (SEM) and 3D profilometry examinations show that the surface roughness increases with the rising spray time. On the other hand, the oxygen adsorption versus working temperature was investigated. Sensing measurements with ethanol, methanol and acetone gases were carried out by a dynamic control of the current passing through the sensitive layers. The best sensitivity was obtained for the film matching a 70 min deposit time. An understanding of the detection mechanism based on the oxidation reaction between reduced vapors and chemisorbed oxygen was confirmed. The selectivity of the sensor was analyzed for several volatile organic compounds (VOCs).

4.
RSC Adv ; 10(36): 21180-21190, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35518758

RESUMO

Indium sulfide (In2S3) thin films have been synthesized on glass substrates using the spray technique (CSP). The S : In molar ratio was varied from 1 to 4 in the starting solution. The Raman analysis confirms the formation of the ß-In2S3 material and the absence of a secondary phase. The EDS analysis reveals that our layers are pure. The thin film surface is free of cracks, as observed in AFM images. Optical transmission achieved 80% in the visible and near infrared region. The refractive index (n) is affected by the changes in the S/In molar ratio. The optical parameters, single oscillator energy (E 0), dispersion energy (E d) and high frequency dielectric constant (ε ∞), are calculated via the Wemple-DiDomenico model. In addition, the photoconductivity kinetics in In2S3 films for S/In = 2 were investigated and analyzed. The I-V characteristics and the photoresponse were also studied.

5.
J Environ Manage ; 237: 595-608, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826641

RESUMO

The purpose of this research was the preparation and photocatalytic evaluation of a novel nanocomposite (NC) based on Fe3O4/ZnO, to eliminate four persistent antibiotics in surface waters: sulfamethoxazole, trimethoprim, erythromycin and roxithromycin. Prior to the operation of the photocatalytic reactor, the influence of pH (3-9), catalyst concentration (50-800 mg L-1), oxidant dose (0-100 mg L-1) and concentration of different targets (10-100 µg L-1) on the catalytic efficiency was evaluated. The analysis of reaction kinetics showed that degradation processes of the four antibiotics followed a pseudo-first-order kinetic model. Antibiotics adsorption onto the nanocomposite surface depended on their electrostatic nature and played an important role when decreasing the initial concentration of antibiotics. In this context, kinetic rates were higher at lower initial levels of organic pollutants, which is a favourable effect from a practical application perspective. On the other hand, a synergistic effect of the available Fe in the nanocomposite was found, contributing to the oxidation of antibiotics by photo-Fenton as a secondary reaction. Then, a magnetic photocatalytic reactor was operated under optimal conditions. The enhanced photonic efficiency of Fe3O4/ZnO in the system, as well as the ease of the magnetic separation and catalyst reusability, indicate the viability of this reactor configuration.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Óxido de Zinco , Antibacterianos , Catálise , Sulfametoxazol
6.
J Mater Chem B ; 5(47): 9395-9404, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264542

RESUMO

In this paper, novel magnetic silica nanocomposites were prepared by anchoring magnetite nanoparticles onto the outer surface of mesoporous SBA-15 silica; the magnetic nanoparticles were prepared by microemulsion and solvothermal methods, varying the synthesis conditions in order to control the final physicochemical, textural and magnetic properties. The morphology and mesostructure of the materials were characterized by X-ray diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), N2 adsorption-desorption, and Transmission and Scanning Electron Microscopy (TEM and SEM). Magnetic silica nanocomposites feature a two-dimensional hexagonal arrangement constituted by a homogeneous pore channel system with diameters between 13 and 18 nm and a Brunauer-Emmett-Teller (BET) surface area higher than 260 m2 g-1. The different morphologies of the samples are given by the presence of diverse magnetic nanoparticle arrangements covalently linked onto the outer surface of the mesoporous silica rods. This confers on them a superparamagnetic behaviour with a magnetic response between 50-80 emu g-1, even though the weight percent of magnetite present in the samples does not exceed 21.7%. In addition, the magnetic nanocomposites exhibit magnetic hyperthermia with moderate Specific Absorption Rate (SAR) values.

7.
J Colloid Interface Sci ; 455: 154-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26068374

RESUMO

This paper reports a novel procedure using nanosomes, made of bola-hydroxyl and mercapto-palmitic acids, for the production of gold clusters with robust luminescent emissions and very large Stokes shifts. It shows that these results cannot be explained by the currently accepted mechanism based on ligand-to-metal charge transfer absorptions involving electron-rich ligands attached to the cluster core. Exhaustive characterization of the cluster samples using Mass Spectrometry, HR-TEM/STEM, XPS, EXAFS, and steady-state and time-resolved luminescence allows to deduce that a mixture of two cluster sizes, having non-closed shell electronic configurations, are firstly generated inside the nanosome compartments due to the difference in bonding strength of the two types of terminal groups in the fatty acids. This initial bimodal cluster size distribution slowly evolves into very stable, closed-shell Au cluster complexes (Au6-Au16 and Au5-Au14) responsible for the observed luminescent properties. The very small (≈1.2 nm) synthesized cluster complexes are water soluble and suitable to be used for the conjugation of biomolecules (through the terminal COO(-) groups) making these systems very attractive as biomarkers and offering, at the same time, a novel general strategy of fabricating stable atom-level quantum dots with large Stokes shifts of great importance in many sensor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...