Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 65: 96-105, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29108850

RESUMO

Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n=11, male, age 18-78 years) from 11 proximal femurs were characterized using dynamic and stress-relaxation testing at the apparent-level and with creep nanoindentation at the tissue-level. In addition, bone tissue elasticity was determined using scanning acoustic microscope (SAM). Tissue composition and collagen crosslinks were assessed using Raman micro-spectroscopy and high performance liquid chromatography (HPLC), respectively. Values of material parameters were obtained from finite element (FE) models by optimizing tissue-level creep and apparent-level stress-relaxation to experimental nanoindentation and unconfined compression testing values, respectively, utilizing the second order Prony series to depict viscoelasticity. FE simulations showed that tissue-level equilibrium elastic modulus (Eeq) increased with increasing crystallinity (r=0.730, p=.011) while at the apparent-level it increased with increasing hydroxylysyl pyridinoline content (r=0.718, p=.019). In addition, the normalized shear modulus g1 (r=-0.780, p=.005) decreased with increasing collagen ratio (amide III/CH2) at the tissue-level, but increased (r=0.696, p=.025) with increasing collagen ratio at the apparent-level. No significant relations were found between the measured or simulated viscoelastic parameters at the tissue- and apparent-levels nor were the parameters related to tissue elasticity determined with SAM. However, only Eeq, g2 and relaxation time τ1 from simulated viscoelastic values were statistically different between tissue- and apparent-levels (p<.01). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone.


Assuntos
Osso Esponjoso/fisiologia , Fêmur/fisiologia , Adolescente , Adulto , Idoso , Colágeno/metabolismo , Simulação por Computador , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Viscosidade , Adulto Jovem
2.
J Biomech ; 49(7): 1111-1120, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26965471

RESUMO

It is not known how inhomogeneous mechanical properties of bone affect contact mechanics and cartilage response during physiological loading of the knee joint. In this study, a finite element model of a cadaver knee joint was constructed based on quantitative computed tomography (QCT). The mechanical properties of bone were altered and their effect on tibiofemoral contact mechanics and cartilage stresses, strains and pore pressures were evaluated during the first 20% of stance. For this purpose, models with rigid, homogeneous and inhomogeneous bones were created. When bone was modeled to be rigid, the resulting contact pressures were substantially higher in the medial side of the joint, as compared to the non-rigid bones. Similar changes were revealed also in stresses, strains and pore pressures throughout the cartilage depth at the cartilage-cartilage contact area. Furthermore, the mechanical response of medial tibial cartilage was found to be highly dependent on the bone properties. When Young׳s modulus in the model with homogeneous bone was 5GPa, cartilage mechanical response approached to that of the model with inhomogeneous bone. Finally, when the apparent bone mineral densities were decreased globally in the inhomogeneous bone, stresses, strains and pore pressures were decreased at all layers of medial tibial cartilage. Similar changes were observed also in cartilage-cartilage contact area of the lateral compartment but with a lesser extent. These results indicate that during physiological loading Young׳s modulus of bone has a substantial influence on cartilage stresses and strains, especially in the medial compartment.


Assuntos
Fêmur/fisiologia , Tíbia/fisiologia , Fenômenos Biomecânicos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/fisiologia , Módulo de Elasticidade , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Masculino , Pressão , Estresse Mecânico , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA