Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044568

RESUMO

Targeted removal experiments are a powerful tool to assess the effects of plant species or (functional) groups on ecosystem functions. However, removing plant biomass in itself can bias the observed responses. This bias is commonly addressed by waiting until ecosystem recovery, but this is inherently based on unverified proxies or anecdotal evidence. Statistical control methods are efficient, but restricted in scope by underlying assumptions. We propose accounting for such biases within the experimental design, using a gradient of biomass removal controls. We demonstrate the relevance of this design by presenting (1) conceptual examples of suspected biases and (2) how to observe and control for these biases. Using data from a mycorrhizal association-based removal experiment, we show that ignoring biomass removal biases (including by assuming ecosystem recovery) can lead to incorrect, or even contrary conclusions (e.g. false positive and false negative). Our gradient design can prevent such incorrect interpretations, regardless of whether aboveground biomass has fully recovered. Our approach provides more objective and quantitative insights, independently assessed for each variable, than using a proxy to assume ecosystem recovery. Our approach circumvents the strict statistical assumptions of, for example, ANCOVA and thus offers greater flexibility in data analysis.

2.
Glob Chang Biol ; 28(23): 7009-7022, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36071549

RESUMO

Arctic ecosystems are changing dramatically with warmer and wetter conditions resulting in complex interactions between herbivores and their forage. We investigated how Svalbard reindeer (Rangifer tarandus platyrhynchus) modify their late winter diets in response to long-term trends and interannual variation in forage availability and accessibility. By reconstructing their diets and foraging niches over a 17-year period (1995-2012) using serum δ13 C and δ15 N values, we found strong support for a temporal increase in the proportions of graminoids in the diets with a concurrent decline in the contributions of mosses. This dietary shift corresponds with graminoid abundance increases in the region and was associated with increases in population density, warmer summer temperatures and more frequent rain-on-snow (ROS) in winter. In addition, the variance in isotopic niche positions, breadths, and overlaps also supported a temporal shift in the foraging niche and a dietary response to extreme ROS events. Our long-term study highlights the mechanisms by which winter and summer climate changes cascade through vegetation shifts and herbivore population dynamics to alter the foraging niche of Svalbard reindeer. Although it has been anticipated that climate changes in the Svalbard region of the Arctic would be detrimental to this unique ungulate, our study suggests that environmental change is in a phase where conditions are improving for this subspecies at the northernmost edge of the Rangifer distribution.


Assuntos
Rena , Animais , Rena/fisiologia , Svalbard , Ecossistema , Espécies Reativas de Oxigênio , Estações do Ano , Regiões Árticas , Dieta , Mudança Climática
3.
Glob Chang Biol ; 28(5): 1853-1869, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870887

RESUMO

Dramatic increases in air temperature and precipitation are occurring in the High Arctic (>70°N), yet few studies have characterized the long-term responses of High Arctic ecosystems to the interactive effects of experimental warming and increased rain. Beginning in 2003, we applied a factorial summer warming and wetting experiment to a polar semidesert in northwest Greenland. In summer 2018, we assessed several metrics of ecosystem structure and function, including plant cover, greenness, ecosystem CO2 exchange, aboveground (leaf, stem) and belowground (litter, root, soil) carbon (C) and nitrogen (N) concentrations (%) and pools, as well as leaf and soil stable isotopes (δ13 C and δ15 N). Wetting induced the most pronounced changes in ecosystem structure, accelerating the expansion of Salix arctica cover by 370% and increasing aboveground C, N, and biomass pools by 94%-101% and root C, N, and biomass pools by 60%-122%, increases which coincided with enhanced net ecosystem CO2 uptake. Further, wetting combined with warming enhanced plot-level greenness, whereas in isolation neither wetting nor warming had an effect. At the plant level, the effects of warming and wetting differed among species and included warming-linked decreases in leaf N and δ15 N in S. arctica, whereas leaf N and δ15 N in Dryas integrifolia did not respond to the climate treatments. Finally, neither plant- nor plot-level C and N allocation patterns nor soil C, N, δ13 C, or δ15 N concentrations changed in response to our manipulations, indicating that these ecosystem metrics may resist climate change, even in the longer term. In sum, our results highlight the importance of summer precipitation in regulating ecosystem structure and function in arid parts of the High Arctic, but they do not completely refute previous findings of resistance in some High Arctic ecosystem properties to climate change.


Assuntos
Benchmarking , Ecossistema , Regiões Árticas , Mudança Climática , Groenlândia , Solo/química
4.
New Phytol ; 232(2): 788-801, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270800

RESUMO

Composition and functioning of arctic soil fungal communities may alter rapidly due to the ongoing trends of warmer temperatures, shifts in nutrient availability, and shrub encroachment. In addition, the communities may also be intrinsically shaped by heavy grazing, which may locally induce an ecosystem change that couples with increased soil temperature and nutrients and where shrub encroachment is less likely to occur than in lightly grazed conditions. We tested how 4 yr of experimental warming and fertilization affected organic soil fungal communities in sites with decadal history of either heavy or light reindeer grazing using high-throughput sequencing of the internal transcribed spacer 2 ribosomal DNA region. Grazing history largely overrode the impacts of short-term warming and fertilization in determining the composition of fungal communities. The less diverse fungal communities under light grazing showed more pronounced responses to experimental treatments when compared with the communities under heavy grazing. Yet, ordination approaches revealed distinct treatment responses under both grazing intensities. If grazing shifts the fungal communities in Arctic ecosystems to a different and more diverse state, this shift may dictate ecosystem responses to further abiotic changes. This indicates that the intensity of grazing cannot be left out when predicting future changes in fungi-driven processes in the tundra.


Assuntos
Micobioma , Rena , Animais , Regiões Árticas , Ecossistema , Fertilização , Solo , Microbiologia do Solo , Tundra
5.
Oecologia ; 196(3): 839-849, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080051

RESUMO

The boreal forest consists of drier sunlit and moister-shaded habitats with varying moss abundance. Mosses control vascular plant-soil interactions, yet they all can also be altered by grazers. We determined how 2 decades of reindeer (Rangifer tarandus) exclusion affect feather moss (Pleurozium schreberi) depth, and the accompanying soil N dynamics (total and dissolvable inorganic N, δ15N), plant foliar N, and stable isotopes (δ15N, δ13C) in two contrasting habitats of an oligotrophic Scots pine forest. The study species were pine seedling (Pinus sylvestris L.), bilberry (Vaccinium myrtillus L.), lingonberry (V. vitis-idaea L.), and feather moss. Moss carpet was deeper in shaded than sunlit habitats and increased with grazer exclusion. Humus N content increased in the shade as did humus δ15N, which also increased due to exclusion in the sunlit habitats. Exclusion increased inorganic N concentration in the mineral soil. These soil responses were correlated with moss depth. Foliar chemistry varied due to habitat depending on species identity. Pine seedlings showed higher foliar N content and lower foliar δ15N in the shaded than in the sunlit habitats, while bilberry had both higher foliar N and δ15N in the shade. Thus, foliar δ15N values of co-existing species diverged in the shade indicating enhanced N partitioning. We conclude that despite strong grazing-induced shifts in mosses and subtler shifts in soil N, the N dynamics of vascular vegetation remain unchanged. These indicate that plant-soil interactions are resistant to shifts in grazing intensity, a pattern that appears to be common across boreal oligotrophic forests.


Assuntos
Briófitas , Solo , Ecossistema , Nitrogênio , Taiga
6.
Nat Commun ; 11(1): 1766, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286301

RESUMO

Arctic plant growth is predominantly nitrogen (N) limited. This limitation is generally attributed to slow soil microbial processes due to low temperatures. Here, we show that arctic plant-soil N cycling is also substantially constrained by the lack of larger detritivores (earthworms) able to mineralize and physically translocate litter and soil organic matter. These new functions provided by earthworms increased shrub and grass N concentration in our common garden experiment. Earthworm activity also increased either the height or number of floral shoots, while enhancing fine root production and vegetation greenness in heath and meadow communities to a level that exceeded the inherent differences between these two common arctic plant communities. Moreover, these worming effects on plant N and greening exceeded reported effects of warming, herbivory and nutrient addition, suggesting that human spreading of earthworms may lead to substantial changes in the structure and function of arctic ecosystems.


Assuntos
Nitrogênio/metabolismo , Oligoquetos/fisiologia , Plantas/metabolismo , Animais , Regiões Árticas , Ecossistema , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Poaceae
7.
Microb Ecol ; 77(1): 186-190, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29948015

RESUMO

Warming-induced increases in microbial CO2 release in northern tundra may positively feedback to climate change. However, shifts in microbial extracellular enzyme activities (EEAs) may alter the impacts of warming over the longer term. We investigated the in situ effects of 3 years of winter warming in combination with the in vitro effects of a rapid warming (6 days) on microbial CO2 release and EEAs in a subarctic tundra heath after snowmelt in spring. Winter warming did not change microbial CO2 release at ambient (10 °C) or at rapidly increased temperatures, i.e., a warm spell (18 °C) but induced changes (P < 0.1) in the Q10 of microbial respiration and an oxidative EEA. Thus, although warmer winters may induce legacy effects in microbial temperature acclimation, we found no evidence for changes in potential carbon mineralization after spring thaw.


Assuntos
Mudança Climática , Microbiota/fisiologia , Estações do Ano , Neve , Microbiologia do Solo , Tundra , Bactérias/enzimologia , Bactérias/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular , Ecologia , Monitoramento Ambiental , Ativação Enzimática , Fungos/enzimologia , Fungos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Solo/química , Temperatura , beta-Glucosidase/metabolismo
8.
J Chem Ecol ; 39(11-12): 1390-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24287946

RESUMO

Mountain crowberry (Empetrum nigrum ssp. hermaphroditum) is a keystone species in northern ecosystems and exerts important ecosystem-level effects through high concentrations of phenolic metabolites. It has not been investigated how crowberry phenolics will respond to global climate change. In the tundra, grazing by reindeer (Rangifer tarandus) affects vegetation and soil nutrient availability, but almost nothing is known about the interactions between grazing and global climate change on plant phenolics. We performed a factorial warming and fertilization experiment in a tundra ecosystem under light grazing and heavy grazing and analyzed individual foliar phenolics and crowberry abundance. Crowberry was more abundant under light grazing than heavy grazing. Although phenolic concentrations did not differ between grazing intensities, responses of crowberry abundance and phenolic concentrations to warming varied significantly depending on grazing intensity. Under light grazing, warming increased crowberry abundance and the concentration of stilbenes, but decreased e.g., the concentrations of flavonols, condensed tannins, and batatasin-III, resulting in no change in total phenolics. Under heavy grazing, warming did not affect crowberry abundance, and induced a weak but consistent decrease among the different phenolic compound groups, resulting in a net decrease in total phenolics. Our results show that the different phenolic compound groups may show varying or even opposing responses to warming in the tundra at different levels of grazing intensity. Even when plant phenolic concentrations do not directly respond to grazing, grazers may have a key control over plant responses to changes in the abiotic environment, reflecting multiple adaptive purposes of plant phenolics and complex interactions between the biotic and the abiotic factors.


Assuntos
Mudança Climática , Ericaceae/metabolismo , Herbivoria , Fenóis/metabolismo , Rena/fisiologia , Animais , Noruega , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...