Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Microbiol Biotechnol ; 15(2-3): 139-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18685267

RESUMO

The biphenyl dioxygenase (BPDO) catalyses a stereospecific dioxygenation of biphenyl and analogs of it. Aside from being involved in the destruction and detoxification of toxic pollutants in soil, in the context of the green chemistry concept, this enzyme is a promising biocatalyst to design new more selective and more environmentally friendly approaches to manufacture fine chemicals. At this time, most of our knowledge about the variability of key residues determining the substrate specificity and regiospecificity of the enzyme oxygenase component (BphAE) toward biphenyl analogs and about the effect of altering these residues on catalytic properties is based on investigations made with BphAEs from cultured organisms and engineered enzymes derived from them. The purpose of this work was to examine the diversity of the amino acid sequence patterns of the alpha subunit (BphA) C-terminal domain deduced from PCR products amplified from DNA extracted from cultured bacteria of various phylogenetic lines and from the soil microflora of PCB-contaminated soils. Of special interest were segments of the C-terminal portion called regions I, III and IV. Altogether, the phylogenetic tree obtained from aligning the deduced amino acid sequences of BphAs C-terminal domain from cultured bacteria belonging to various ecological niches and from uncultured soil bacteria reveals that most of the BphAs were linked to the three clusters of BphAs previously reported. However, few belong to new branches that diverge from the previously known branches showing a high diversity of BphAs in natural environment. Furthermore, data show a wide distribution of BphAs with family linkages that not only crosses bacterial taxonomic frontiers but also ecological niches. Nevertheless, in spite of this divergence, the sequence patterns of regions III and IV amino acids that are known to influence substrate specificity and regiospecificity are rather conserved among BphAs and the pattern was independent of the family cluster to which they belong. In most cases, regions III and IV amino acid patterns are closer to those of Pseudomonas pseudoalcaligenes KF707 BphA1 than to the most versatile Burkholderia xenovorans LB400 BphA. This might suggest that the PCB-degrading potency of soil bacteria is closer to the one observed for KF707 BphAE than from LB400 BphAE. However, the fact that among less than 20 PCR products amplified from soil DNA that we have sequenced, one of them was very homologous to that of LB400 BphA and in addition, residues 335 and 336 of LB400 were replaced by residues that previous enzyme engineering had shown to extend the range of PCB substrate used by the enzyme strongly suggest that PCB-degrading bacteria are evolving in soil to optimize their PCB-degrading capacity.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/enzimologia , Oxigenases/química , Bifenilos Policlorados/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Burkholderia/genética , Genes Bacterianos , Oxigenases/genética , Oxigenases/metabolismo , Bifenilos Policlorados/química , Especificidade por Substrato
2.
J Bacteriol ; 189(3): 779-88, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17142386

RESUMO

Previous work has shown that the C-terminal portion of BphA, especially two amino acid segments designated region III and region IV, influence the regiospecificity of the biphenyl dioxygenase (BPDO) toward 2,2'-dichlorobiphenyl (2,2'-CB). In this work, we evolved BPDO by shuffling bphA genes amplified from polychlorinated biphenyl-contaminated soil DNA. Sets of approximately 1-kb DNA fragments were amplified with degenerate primers designed to amplify the C-terminal portion of bphA. These fragments were shuffled, and the resulting library was used to replace the corresponding fragment of Burkholderia xenovorans LB400 bphA. Variants were screened for their ability to oxygenate 2,2'-CB onto carbons 5 and 6, which are positions that LB400 BPDO is unable to attack. Variants S100, S149, and S151 were obtained and exhibited this feature. Variant S100 BPDO produced exclusively cis-5,6-dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl from 2,2'-CB. Moreover, unlike LB400 BPDO, S100 BphA catalyzed the oxygenation of 2,2',3,3'-tetrachlorobiphenyl onto carbons 5 and 6 exclusively and it was unable to oxygenate 2,2',5,5'-tetrachlorobiphenyl. Based on oxygen consumption measurements, variant S100 oxygenated 2,2'-CB at a rate of 16 +/- 1 nmol min(-1) per nmol enzyme, which was similar to the value observed for LB400 BPDO. cis-5,6-Dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl was further oxidized by 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) and 2,3-dihydroxybiphenyl dioxygenase (BphC). Variant S100 was, in addition, able to oxygenate benzene, toluene, and ethyl benzene. Sequence analysis identified amino acid residues M237 S238 and S283 outside regions III and IV that influence the activity toward doubly ortho-substituted chlorobiphenyls.


Assuntos
Burkholderia/enzimologia , Dioxigenases/metabolismo , Bifenilos Policlorados/metabolismo , Microbiologia do Solo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzeno/metabolismo , Compostos de Bifenilo/metabolismo , Burkholderia/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Dioxigenases/química , Dioxigenases/genética , Cromatografia Gasosa-Espectrometria de Massas , Modelos Genéticos , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Solo , Relação Estrutura-Atividade , Especificidade por Substrato , Tolueno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...