Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 386(1): 26-34, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068911

RESUMO

Vericiguat and its metabolite M-1 were assessed for proarrhythmic risk in nonclinical in vitro and in vivo studies. In vitro manual voltage-clamp recordings at room temperature determined the effect of vericiguat on human Ether-a-go-go Related Gene (hERG) K+ channels. Effects of vericiguat and M-1 on hERG K+, Nav1.5, hCav1.2, hKvLQT1/1minK, and hKv4.3 channels were investigated via automated voltage-clamp recordings at ambient temperature. Effects of vericiguat and M-1 on hERG K+ and Nav1.5 channels at pathophysiological conditions were explored via manual voltage-clamp recordings at physiologic temperature. Single oral doses of vericiguat (0.6, 2.0, and 6.0 mg/kg) were assessed for in vivo proarrhythmic risk via administration to conscious telemetered dogs; electrocardiogram (ECG) and hemodynamic parameters were monitored. ECG recordings were included in 4- and 39-week dog toxicity studies. In manual voltage-clamp recordings, vericiguat inhibited hERG K+-mediated tail currents in a concentration-dependent manner (20% threshold inhibitory concentration ∼1.9 µM). In automated voltage-clamp recordings, neither vericiguat nor M-1 were associated with biologically relevant inhibition (>20%) of hNav1.5, hCav1.2, hKvLQT1, and hKv4.3. No clinically relevant observations were made for hNav1.5 and hKvLQT1 under simulated pathophysiological conditions. Vericiguat was associated with expected mode-of-action-related dose-dependent changes in systolic arterial blood pressure (up to -20%) and heart rate (up to +53%). At maximum vericiguat dose, corrected QT (QTc) interval changes from baseline varied slightly (-6 to +1%) depending on correction formula. Toxicity studies confirmed absence of significant QTc interval changes. There was no evidence of an increased proarrhythmic risk from nonclinical studies with vericiguat or M-1. SIGNIFICANCE STATEMENT: There was no evidence of an increased proarrhythmic risk from in vitro and in vivo nonclinical studies with vericiguat or M-1. The integrated risk assessment of these nonclinical data combined with existing clinical data demonstrate administration of vericiguat 10 mg once daily in patients with heart failure with reduced ejection fraction is not associated with a proarrhythmic risk.


Assuntos
Insuficiência Cardíaca , Compostos Heterocíclicos com 2 Anéis , Humanos , Animais , Cães , Guanilil Ciclase Solúvel/metabolismo , Pirimidinas , Vasodilatadores , Canais de Potássio Éter-A-Go-Go
2.
Front Neural Circuits ; 7: 127, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23914156

RESUMO

Peptidergic neurons are not easily integrated into current connectomics concepts, since their peptide messages can be distributed via non-synaptic paracrine signaling or volume transmission. Moreover, the polarity of peptidergic interneurons in terms of in- and out-put sites can be hard to predict and is very little explored. We describe in detail the morphology and the subcellular distribution of fluorescent vesicle/dendrite markers in CCAP neurons (NCCAP), a well defined set of peptidergic neurons in the Drosophila larva. NCCAP can be divided into five morphologically distinct subsets. In contrast to other subsets, serial homologous interneurons in the ventral ganglion show a mixed localization of in- and output markers along ventral neurites that defy a classification as dendritic or axonal compartments. Ultrastructurally, these neurites contain both pre- and postsynaptic sites preferably at varicosities. A significant portion of the synaptic events are due to reciprocal synapses. Peptides are mostly non-synaptically or parasynaptically released, and dense-core vesicles and synaptic vesicle pools are typically well separated. The responsiveness of the NCCAP to ecdysis-triggering hormone may be at least partly dependent on a tonic synaptic inhibition, and is independent of ecdysteroids. Our results reveal a remarkable variety and complexity of local synaptic circuitry within a chemically defined set of peptidergic neurons. Synaptic transmitter signaling as well as peptidergic paracrine signaling and volume transmission from varicosities can be main signaling modes of peptidergic interneurons depending on the subcellular region. The possibility of region-specific variable signaling modes should be taken into account in connectomic studies that aim to dissect the circuitry underlying insect behavior and physiology, in which peptidergic neurons act as important regulators.


Assuntos
Neurônios/fisiologia , Fragmentos de Peptídeos/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Interneurônios/química , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Dados de Sequência Molecular , Neurônios/química , Neurônios/ultraestrutura , Fragmentos de Peptídeos/análise , Sinapses/química , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
3.
PLoS One ; 3(3): e1848, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18365004

RESUMO

Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides.


Assuntos
Aminas Biogênicas/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Gânglios/metabolismo , Larva/metabolismo , Animais , Imuno-Histoquímica
4.
Dev Neurobiol ; 68(1): 123-42, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17948246

RESUMO

The paired antennal lobes (ALs) of the sphinx moth Manduca sexta serve as a well-established model for studying development of the primary integration centers for odor information in the brain. To further reveal the role of neuropeptides during AL development, we have analyzed cellular distribution, developmental time course, and regulation of the neuropeptide M. sexta allatotropin (Mas-AT). On the basis of morphology and appearance during AL formation, seven major types of Mas-AT-immunoreactive (ir) cells could be distinguished. Mas-AT-ir cells are identified as local, projection, and centrifugal neurons, which are either persisting larval or newly added adult-specific neurons. Complementary immunostaining with antisera against two other neuropeptide families (A-type allatostatins, RFamides) revealed colocalization within three of the Mas-AT-ir cell types. On the basis of this neurochemistry, the most prominent type of Mas-AT-ir neurons, the local AT neurons (LATn), could be divided in three subpopulations. The appearance of the Mas-AT-ir cell types occurring during metamorphosis parallels the rising titer of the developmental hormone 20-hydroxyecdysone (20E). Artificially shifting the 20E titer to an earlier developmental time point resulted in the precocious occurrence of Mas-AT immunostaining. This result supports the hypothesis that the pupal rise of 20E is causative for Mas-AT expression during AL development. Comparing localization and developmental time course of Mas-AT and other neuropeptides with the time course of AL formation suggests various functions for these neuropeptides during development, including an involvement in the formation of the olfactory glomeruli.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hormônios de Inseto/metabolismo , Manduca/anatomia & histologia , Neuropeptídeos/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Fatores Etários , Animais , Ecdisterona/administração & dosagem , Ecdisterona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imageamento Tridimensional/métodos , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
5.
PLoS One ; 2(8): e695, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17668072

RESUMO

Recent studies on Drosophila melanogaster and other insects have revealed important insights into the functions and evolution of neuropeptide signaling. In contrast, in- and output connections of insect peptidergic circuits are largely unexplored. Existing morphological descriptions typically do not determine the exact spatial location of peptidergic axonal pathways and arborizations within the neuropil, and do not identify peptidergic in- and output compartments. Such information is however fundamental to screen for possible peptidergic network connections, a prerequisite to understand how the CNS controls the activity of peptidergic neurons at the synaptic level. We provide a precise 3D morphological description of peptidergic neurons in the thoracic and abdominal neuromeres of the Drosophila larva based on fasciclin-2 (Fas2) immunopositive tracts as landmarks. Comparing the Fas2 "coordinates" of projections of sensory or other neurons with those of peptidergic neurons, it is possible to identify candidate in- and output connections of specific peptidergic systems. These connections can subsequently be more rigorously tested. By immunolabeling and GAL4-directed expression of marker proteins, we analyzed the projections and compartmentalization of neurons expressing 12 different peptide genes, encoding approximately 75% of the neuropeptides chemically identified within the Drosophila CNS. Results are assembled into standardized plates which provide a guide to identify candidate afferent or target neurons with overlapping projections. In general, we found that putative dendritic compartments of peptidergic neurons are concentrated around the median Fas2 tracts and the terminal plexus. Putative peptide release sites in the ventral nerve cord were also more laterally situated. Our results suggest that i) peptidergic neurons in the Drosophila ventral nerve cord have separated in- and output compartments in specific areas, and ii) volume transmission is a prevailing way of peptidergic communication within the CNS. The data can further be useful to identify colocalized transmitters and receptors, and develop peptidergic neurons as new landmarks.


Assuntos
Drosophila melanogaster , Larva , Rede Nervosa , Neurônios/citologia , Neuropeptídeos/metabolismo , Animais , Biomarcadores/metabolismo , Padronização Corporal , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Gânglios dos Invertebrados/anatomia & histologia , Gânglios dos Invertebrados/metabolismo , Larva/anatomia & histologia , Larva/metabolismo , Rede Nervosa/anatomia & histologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transdução de Sinais/fisiologia
6.
Dev Neurobiol ; 67(6): 792-808, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17443825

RESUMO

The complete sequencing of the Drosophila melanogaster genome allowed major progress in the research on invertebrate neuropeptide signaling. However, it is still largely unknown how the insect CNS exerts synaptic control over the secretory activity of peptidergic neurons; afferent pathways and employed chemical transmitters remain largely unidentified. In the present study, we set out to identify neurotransmitters mediating synaptic input onto CCAP-expressing neurons (N(CCAP)), which play an important role in the regulation of ecdysis-related events. By in vitro and in situ calcium imaging with synthetic and genetically encoded calcium indicators, we provide evidence that differential neurotransmitter inputs control the activity of N(CCAP) subsets. In short-term culture, almost all N(CCAP) showed increases of the free intracellular calcium concentration after application of acetylcholine (ACh) and nicotine, whereas only some N(CCAP) responded to glutamate and GABA. In the intact ventral ganglia of both larvae and adults, only few N(CCAP) showed intracellular calcium-rises or calcium-oscillations after application of cholinergic agonists indicating a prevailing central inhibition of most N(CCAP) during these developmental stages. In larvae, responding N(CCAP) were primarily located in the third thoracic neuromere. At least one N(CCAP) pair in this neuromere belonged to a morphologically distinct subset with neurohemal endings on the body wall muscles. Our results suggest that N(CCAP) express functional receptors for ACh, glutamate, and GABA, and indicate that these transmitters are involved in a context-dependent regulation of functionally distinct N(CCAP) subsets.


Assuntos
Cálcio/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/ultraestrutura , Drosophila melanogaster , Imageamento Tridimensional , Imuno-Histoquímica , Líquido Intracelular/química , Microscopia Confocal , Neurônios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...