Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 17(2): 1143-1154, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435672

RESUMO

In this paper, we analyze the numerical aspects of the inherent multireference density matrix renormalization group (DMRG) calculations on top of the periodic Kohn-Sham density functional theory using the complete active space approach. The potential of the framework is illustrated by studying hexagonal boron nitride nanoflakes embedding a charged single boron vacancy point defect by revealing a vertical energy spectrum with a prominent multireference character. We investigate the consistency of the DMRG energy spectrum from the perspective of sample size, basis size, and active space selection protocol. Results obtained from standard quantum chemical atom-centered basis calculations and plane-wave based counterparts show excellent agreement. Furthermore, we also discuss the spectrum of the periodic sheet which is in good agreement with extrapolated data of finite clusters. These results pave the way toward applying the DMRG method in extended correlated solid-state systems, such as point defect qubit in wide band gap semiconductors.

2.
Nat Commun ; 10(1): 4946, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666508

RESUMO

Due to their exceptional high energy density, lithium-ion batteries are of central importance in many modern electrical devices. A serious limitation, however, is the slow charging rate used to obtain the full capacity. Thus far, there have been no ways to increase the charging rate without losses in energy density and electrochemical performance. Here we show that the charging rate of a cathode can be dramatically increased via interaction with white light. We find that a direct exposure of light to an operating LiMn2O4 cathode during charging leads to a remarkable lowering of the battery charging time by a factor of two or more. This enhancement is enabled by the induction of a microsecond long-lived charge separated state, consisting of Mn4+ (hole) plus electron. This results in more oxidized metal centers and ejected lithium ions are created under light and with voltage bias. We anticipate that this discovery could pave the way to the development of new fast recharging battery technologies.

3.
Adv Mater ; 31(40): e1902518, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31441124

RESUMO

Lithium-CO2 batteries are attractive energy-storage systems for fulfilling the demand of future large-scale applications such as electric vehicles due to their high specific energy density. However, a major challenge with Li-CO2 batteries is to attain reversible formation and decomposition of the Li2 CO3 and carbon discharge products. A fully reversible Li-CO2 battery is developed with overall carbon neutrality using MoS2 nanoflakes as a cathode catalyst combined with an ionic liquid/dimethyl sulfoxide electrolyte. This combination of materials produces a multicomponent composite (Li2 CO3 /C) product. The battery shows a superior long cycle life of 500 for a fixed 500 mAh g-1 capacity per cycle, far exceeding the best cycling stability reported in Li-CO2 batteries. The long cycle life demonstrates that chemical transformations, making and breaking covalent CO bonds can be used in energy-storage systems. Theoretical calculations are used to deduce a mechanism for the reversible discharge/charge processes and explain how the carbon interface with Li2 CO3 provides the electronic conduction needed for the oxidation of Li2 CO3 and carbon to generate the CO2 on charge. This achievement paves the way for the use of CO2 in advanced energy-storage systems.

4.
ACS Nano ; 13(4): 3839-3846, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30855942

RESUMO

We present a combined experimental and theoretical study of ligand-ligand cooperativity during X-type carboxylate-to-carboxylate ligand exchange reactions on PbS quantum dot surfaces. We find that the ligand dipole moment (varied through changing the substituents on the benzene ring of cinnamic acid derivatives) impacts the ligand-exchange isotherms; in particular, ligands with large electron withdrawing character result in a sharper transition from an oleate-dominated ligand shell to a cinnamate-dominated ligand shell. We developed a two-dimensional lattice model to simulate the ligand-exchange isotherms that accounts for the difference in ligand binding energy as well as ligand-ligand cooperativity. Our model shows that ligands with larger ligand-ligand coupling energy exhibit sharper isotherms indicating an order-disorder phase transition. Finally, we developed an anisotropic Janus ligand shell by taking advantage of the ligand-ligand cooperative ligand exchanges. We monitored the Janus ligand shell using 19F nuclear magnetic resonance, showing that when the ligand-ligand coupling energy falls within the order region of the phase diagram, Janus ligand shells can be constructed.

5.
Adv Mater ; 31(4): e1804453, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30500098

RESUMO

The optimization of traditional electrocatalysts has reached a point where progress is impeded by fundamental physical factors including inherent scaling relations among thermokinetic characteristics of different elementary reaction steps, non-Nernstian behavior, and electronic structure of the catalyst. This indicates that the currently utilized classes of electrocatalysts may not be adequate for future needs. This study reports on synthesis and characterization of a new class of materials based on 2D transition metal dichalcogenides including sulfides, selenides, and tellurides of group V and VI transition metals that exhibit excellent catalytic performance for both oxygen reduction and evolution reactions in an aprotic medium with Li salts. The reaction rates are much higher for these materials than previously reported catalysts for these reactions. The reasons for the high activity are found to be the metal edges with adiabatic electron transfer capability and a cocatalyst effect involving an ionic-liquid electrolyte. These new materials are expected to have high activity for other core electrocatalytic reactions and open the way for advances in energy storage and catalysis.

6.
ACS Nano ; 12(10): 10084-10094, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30216045

RESUMO

Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbS|CdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbS|CdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.

7.
J Phys Chem Lett ; 9(12): 3425-3433, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29857647

RESUMO

We studied the optical absorption enhancement in colloidal suspensions of PbS quantum dots (QD) upon ligand exchange from oleate to a series of cinnamate ligands. By combining experiments and ab initio simulations, we elucidate physical parameters that govern the optical absorption enhancement. We find that, within the cinnamate/PbS QD system, the optical absorption enhancement scales linearly with the electronic gap of the ligand, indicating that the ligand/QD coupling occurs equally efficient between the QD and ligand HOMO and their respective LUMO levels. Disruption of the conjugation that connects the aromatic ring and its substituents to the QD core causes a reduction of the electronic coupling. Our results further support the notion that the ligand/QD complex should be considered as a distinct chemical system with emergent behavior rather than a QD core with ligands whose sole purpose is to passivate surface dangling bonds and prevent agglomeration.

8.
Nano Lett ; 18(1): 255-261, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29227689

RESUMO

Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilities substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Finally, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.

9.
Sci Rep ; 7(1): 7071, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765599

RESUMO

Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters support a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.

10.
Nat Commun ; 8: 15257, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508866

RESUMO

Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

11.
J Chem Theory Comput ; 13(7): 3318-3325, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28537727

RESUMO

We analyze the performance of the recently proposed screened exchange constant functional (SX) ( Brawand et al. Phys. Rev. X 2016 , 6 , 041002 ) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yields improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (αSX) are determined self-consistently, and those where αSX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G0W0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.

12.
J Chem Theory Comput ; 13(6): 2581-2590, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28426221

RESUMO

The in silico design of novel complex materials for energy conversion requires accurate, ab initio simulation of charge transport. In this work, we present an implementation of constrained density functional theory (CDFT) for the calculation of parameters for charge transport in the hopping regime. We verify our implementation against literature results for molecular systems, and we discuss the dependence of results on numerical parameters and the choice of localization potentials. In addition, we compare CDFT results with those of other commonly used methods for simulating charge transport between nanoscale building blocks. We show that some of these methods give unphysical results for thermally disordered configurations, while CDFT proves to be a viable and robust approach.

13.
Proc Natl Acad Sci U S A ; 114(12): 3050-3055, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265083

RESUMO

NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts.

14.
Nano Lett ; 17(4): 2547-2553, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287746

RESUMO

Heterogeneous nanostructures, such as quantum dots (QDs) embedded in solid matrices or core-shell nanoparticles, are promising platforms for a wide variety of applications, including phosphors with increased quantum yield, photocatalysis, and solar energy conversion. However, characterizing and controlling their interfacial morphology and defects, which greatly influence their electronic properties, have proven difficult in numerous cases. Here we carried out atomistic calculations on chalcogenide nanostructured materials, i.e., PbSe QDs in CdSe matrices and CdSe embedded in PbSe, and we established how interfacial and core structures affect their electronic properties. In particular, we showed that defects present at interfaces of PbSe nanoparticles and CdSe matrices give rise to detrimental intragap states, degrading the performance of photovoltaic devices. Instead, the electronic gaps of the inverted system (CdSe dots in PbSe) are clean, indicating that this material has superior electronic properties for solar applications. In addition, our calculations predicted that the core structure of CdSe and in turn its band gap may be tuned by applying pressure to the PbSe matrix, providing a means to engineering the properties of new functional materials.

15.
Nat Commun ; 7: 11327, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103340

RESUMO

The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born-Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron-vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron-vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born-Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn-Teller effect.

16.
ACS Nano ; 9(7): 6882-90, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26042468

RESUMO

The Intermediate Band (IB) solar cell concept is a promising idea to transcend the Shockley-Queisser limit. Using the results of first-principles calculations, we propose that colloidal nanoparticles (CNPs) are a viable and efficient platform for the implementation of the IB solar cell concept. We focused on CdSe CNPs and we showed that intragap states present in the isolated CNPs with reconstructed surfaces combine to form an IB in arrays of CNPs, which is well separated from the valence and conduction band edges. We demonstrated that optical transitions to and from the IB are active. We also showed that the IB can be electron doped in a solution, e.g., by decamethylcobaltocene, thus activating an IB-induced absorption process. Our results, together with the recent report of a nearly 10% efficient CNP solar cell, indicate that colloidal nanoparticle intermediate band solar cells are a promising platform to overcome the Shockley-Queisser limit.

17.
Nanoscale ; 7(8): 3737-44, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25644225

RESUMO

Exponential blinking statistics was reported in oxidized Si nanoparticles and the switching mechanism was attributed to the activation and deactivation of unidentified nonradiative recombination centers. Using ab initio calculations we predicted that Si dangling bonds at the surface of oxidized nanoparticles introduce defect states which, depending on their charge and local stress conditions, may give rise to ON and OFF states responsible for exponential blinking statistics. Our results are based on first principles calculations of charge transition levels, single particle energies, and radiative and nonradiative lifetimes of dangling bond defects at the surface of oxidized silicon nanoparticles under stress.

18.
J Chem Phys ; 141(6): 064308, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25134572

RESUMO

Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G0W0 and G0W0+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G0W0+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G0W0 quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.

19.
Phys Rev Lett ; 112(10): 106801, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679319

RESUMO

We propose that embedding silicon nanoparticles (NP) into amorphous, nonstoichiometric ZnS leads to promising nanocomposites for solar energy conversion. Using ab initio molecular dynamics simulations we show that, upon high temperature amorphization of the host chalcogenide, sulfur atoms are drawn to the NP surface. We find that the sulfur content may be engineered to form a type II heterojunction, with complementary charge transport channels for electrons and holes, and that sulfur capping is beneficial to lower the nanoparticle gap, with respect to that of NPs embedded in oxide matrices. Our analysis is conducted using density functional theory with local and hybrid functionals and many body perturbation theory at the GW level.

20.
J Chem Theory Comput ; 10(8): 3290-8, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26588298

RESUMO

We present an ab initio study of the excited state properties of silicon nanoparticles (NPs) with diameters of 1.2 and 1.6 nm. Quasiparticle corrections were computed within the G0W0 approximation. The absorption spectra were computed by time-dependent density functional theory (TDDFT) using the adiabatic PBE approximation, and by solving the Bethe-Salpeter equation (BSE). In our calculations, we used recently developed methods that avoid the explicit inversion of the dielectric matrix and summations over empty electronic states. We found that a scissor operator reliably describes quasiparticle corrections for states in the low energy part of the spectra. Our results also showed good agreement between the positions of the absorption peaks obtained using TDDFT and the BSE in the low part of the spectra, although the peak intensities differ. We discuss the effect of the Tamm-Dancoff approximation on the optical properties of the NPs and present a quantitative analysis in terms of sum rules. In the case of the BSE we found that, even in the absence of the Tamm-Dancoff approximation, the f-sum rule is not fully satisfied due to an inconsistency between the approximations used for the BSE kernel and for the quasiparticle Hamiltonian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...