Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Oncol ; 30(10): 8805-8814, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887535

RESUMO

EGFR-mutant lung cancers develop a wide range of potential resistance alterations under therapy with the third-generation EGFR tyrosine kinase inhibitor osimertinib. MET amplification ranks among the most common acquired resistance alterations and is currently being investigated as a therapeutic target in several studies. Nevertheless, targeted therapy of MET might similarly result in acquired resistance by point mutations in MET, which further expands therapeutic and diagnostic challenges. Here, we report a 50-year-old male patient with EGFR-mutant lung adenocarcinoma and stepwise acquired resistance by a focal amplification of MET followed by D1246N (D1228N), D1246H (D1228H), and L1213V (L1195V) point mutations in MET, all detected by NGS. The patient successfully responded to the combined and sequential treatment of osimertinib, osimertinib/crizotinib, and third-line osimertinib/cabozantinib. This case highlights the importance of well-designed, sequential molecular diagnostic analyses and the personalized treatment of patients with acquired resistance.


Assuntos
Neoplasias Pulmonares , Humanos , Masculino , Pessoa de Meia-Idade , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-met/genética
2.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444554

RESUMO

The worldwide approval of the combination maintenance therapy of olaparib and bevacizumab in advanced high-grade serous ovarian cancer requires complex molecular diagnostic assays that are sufficiently robust for the routine detection of driver mutations in homologous recombination repair (HRR) genes and genomic instability (GI), employing formalin-fixed (FFPE) paraffin-embedded tumor samples without matched normal tissue. We therefore established a DNA-based hybrid capture NGS assay and an associated bioinformatic pipeline that fulfils our institution's specific needs. The assay´s target regions cover the full exonic territory of relevant cancer-related genes and HRR genes and more than 20,000 evenly distributed single nucleotide polymorphism (SNP) loci to allow for the detection of genome-wide allele specific copy number alterations (CNA). To determine GI status, we implemented an %CNA score that is robust across a broad range of tumor cell content (25-85%) often found in routine FFPE samples. The assay was established using high-grade serous ovarian cancer samples for which BRCA1 and BRCA2 mutation status as well as Myriad MyChoice homologous repair deficiency (HRD) status was known. The NOGGO (Northeastern German Society for Gynecologic Oncology) GIS (GI-Score) v1 assay was clinically validated on more than 400 samples of the ENGOT PAOLA-1 clinical trial as part of the European Network for Gynaecological Oncological Trial groups (ENGOT) HRD European Initiative. The "NOGGO GIS v1 assay" performed using highly robust hazard ratios for progression-free survival (PFS) and overall survival (OS), as well a significantly lower dropout rate than the Myriad MyChoice clinical trial assay supporting the clinical utility of the assay. We also provide proof of a modular and scalable routine diagnostic method, that can be flexibly adapted and adjusted to meet future clinical needs, emerging biomarkers, and further tumor entities.

3.
J Hum Genet ; 66(12): 1159-1167, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34211111

RESUMO

Heterotopia is a brain malformation caused by a failed migration of cortical neurons during development. Clinical symptoms of heterotopia vary in severity of intellectual disability and may be associated with epileptic disorders. Abnormal neuronal migration is known to be associated with mutations in the doublecortin gene (DCX), the platelet-activating factor acetylhydrolase gene (PAFAH1B1), or tubulin alpha-1A gene (TUBA1A). Recently, a new gene encoding echinoderm microtubule-associated protein-like 1 (EML1) was reported to cause a particular form of subcortical heterotopia, the ribbon-like subcortical heterotopia (RSH). EML1 mutations are inherited in an autosomal recessive manner. Only six unrelated EML1-associated heterotopia-affected families were reported so far. The EML1 protein is a member of the microtubule-associated proteins family, playing an important role in microtubule assembly and stabilization as well as in mitotic spindle formation in interphase. Herein, we present a novel homozygous missense variant in EML1 (NM_004434.2: c.692G>A, NP_004425.2: p.Gly231Asp) identified in a male RSH-affected patient. Our clinical and molecular findings confirm the genotype-phenotype associations of EML1 mutations and RSH. Analyses of patient-derived fibroblasts showed the significantly reduced length of primary cilia. In addition, our results presented, that the mutated EML1 protein did not change binding capacities with tubulin. The data described herein will expand the mutation spectrum of the EML1 gene and provide further insight into molecular and cellular bases of the pathogenic mechanisms underlying RSH.


Assuntos
Cílios/metabolismo , Predisposição Genética para Doença , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação de Sentido Incorreto , Fenótipo , Alelos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Consanguinidade , Análise Mutacional de DNA , Fibroblastos/metabolismo , Estudos de Associação Genética/métodos , Homozigoto , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Linhagem , Conformação Proteica , Relação Estrutura-Atividade , Sequenciamento do Exoma
4.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808286

RESUMO

X-linked retinitis pigmentosa (XLRP) is frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. A complex splicing process acts on the RPGR gene resulting in three major isoforms: RPGRex1-19, RPGRORF15 and RPGRskip14/15. We characterized the widely expressed, alternatively spliced transcript RPGRskip14/15 lacking exons 14 and 15. Using the CRISPR/eSpCas9 system, we generated HEK293T cell lines exclusively expressing the RPGRskip14/15 transcript from the endogenous RPGR gene. RPGRex1-19 and RPGRORF15 were knocked out. Immunocytochemistry demonstrated that the RPGRskip14/15 protein localizes along primary cilia, resembling the expression pattern of RPGRex1-19. The number of cilia-carrying cells was not affected by the absence of the RPGRex1-19 and RPGRORF15 isoforms. Co-immunoprecipitation assays demonstrated that both RPGRex1-19 and RPGRskip14/15 interact with PDE6D, further supporting that RPGRskip14/15 is associated with the protein networks along the primary cilium. Interestingly, interaction complexes with INPP5E or RPGRIP1L were only detectable with isoform RPGRex1-19, but not with RPGRskip14/15, demonstrating distinct functional properties of the major RPGR isoforms in spite of their similar subcellular localization. Our findings lead to the conclusion that protein binding sites within RPGR are mediated through alternative splicing. A tissue-specific expression ratio between RPGRskip14/15 and RPGRex1-19 seems required to regulate the ciliary concentration of RPGR interaction partners.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Olho/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo/genética , Sítios de Ligação , Cílios/genética , Cílios/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Éxons/genética , Proteínas do Olho/metabolismo , Células HEK293 , Humanos , Mutação/genética , Monoéster Fosfórico Hidrolases/genética , Isoformas de Proteínas/genética , Splicing de RNA/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
5.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182541

RESUMO

X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases.


Assuntos
Códon sem Sentido/efeitos dos fármacos , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas Mutantes/genética , Oxidiazóis/uso terapêutico , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Estudos de Casos e Controles , Células Cultivadas , Cílios/metabolismo , Proteínas do Olho/biossíntese , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HEK293 , Hemizigoto , Humanos , Proteínas Mutantes/biossíntese , Estudo de Prova de Conceito , Biossíntese de Proteínas/efeitos dos fármacos , Estabilidade de RNA , Retinose Pigmentar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...