Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 412(6843): 172-5, 2001 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-11449270

RESUMO

Direct dating of ductile shear zones and calculation of uplift/exhumation rates can be done using various radiometric dating techniques. But radiometric dating of shallow crustal faulting, which occurs in the crust's brittle regime, has remained difficult because the low temperatures typical of shallow crusted faults prevent the complete syntectonic mineral recrystallization that occurs in deeper faults. Both old (detrital) and newly grown (authigenic) fine-grained phyllosilicates are thus preserved in shallow fault zones and therefore their radiometric ages reflect a mixture of both mineral populations. Also, the loss of 39Ar during neutron irradiation in dating of clay minerals can produce erroneously old ages. Here we present a method of characterizing the clay populations in fault gouge, using X-ray modelling, combined with sample encapsulation, and show how it can be used to date near-surface fault activity reliably. We examine fault gouge from the Lewis thrust of the southern Canadian Rockies, which we determine to be approximately 52 Myr old. This result requires the western North America stress regime to have changed from contraction to extension in only a few million years during the Eocene. We also estimate the uplift/exhumation age and sedimentary source of these rocks to be approximately 172 Myr.

2.
Science ; 254(5032): 695-8, 1991 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17774797

RESUMO

Structural, petrological, and geochronological studies of the middle to late Proterozoic Grenville orogen in Ontario, Canada, indicate that a major extensional fault developed synchronously with late thrusting. This fault zone was initiated during peak metamorphism and extended into the crust to depths of at least 25 kilometers. The temporal and spatial relations among faulting, metamorphism, and regional compression indicate that synorogenic collapse initiated because the crust exceeded the maximum physiographic height and thickness that could be supported by its rheology. Comparison of Grenville with recent Himalayan orogenic activity suggests that during Proterozoic times physiographic height, crustal thickness, and crustal strength were similar to modern conditions in orogenic belts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA