Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Pathol ; 33(1): e13099, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698024

RESUMO

Cerebral ischemia is the leading cause for long-term disability and mortality in adults due to massive neuronal death. Currently, there is no pharmacological treatment available to limit progressive neuronal death after stroke. A major mechanism causing ischemia-induced neuronal death is the excessive release of glutamate and the associated overexcitation of neurons (excitotoxicity). Normally, GABAB receptors control neuronal excitability in the brain via prolonged inhibition. However, excitotoxic conditions rapidly downregulate GABAB receptors via a CaMKII-mediated mechanism and thereby diminish adequate inhibition that could counteract neuronal overexcitation and neuronal death. To prevent the deleterious downregulation of GABAB receptors, we developed a cell-penetrating synthetic peptide (R1-Pep) that inhibits the interaction of GABAB receptors with CaMKII. Administration of this peptide to cultured cortical neurons exposed to excitotoxic conditions restored cell surface expression and function of GABAB receptors. R1-Pep did not affect CaMKII expression or activity but prevented its T286 autophosphorylation that renders it autonomously and persistently active. Moreover, R1-Pep counteracted the aberrant downregulation of G protein-coupled inwardly rectifying K+ channels and the upregulation of N-type voltage-gated Ca2+ channels, the main effectors of GABAB receptors. The restoration of GABAB receptors activated the Akt survival pathway and inhibited excitotoxic neuronal death with a wide time window in cultured neurons. Restoration of GABAB receptors and neuroprotective activity of R1-Pep was verified by using brain slices prepared from mice after middle cerebral artery occlusion (MCAO). Treatment with R1-Pep restored normal GABAB receptor expression and GABA receptor-mediated K+ channel currents. This reduced MCAO-induced neuronal excitability and inhibited neuronal death. These results support the hypothesis that restoration of GABAB receptor expression under excitatory conditions provides neuroprotection and might be the basis for the development of a selective intervention to inhibit progressive neuronal death after ischemic stroke.


Assuntos
Isquemia Encefálica , Receptores de GABA-B , Camundongos , Animais , Receptores de GABA-B/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Peptídeos , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Biomed Opt Express ; 13(7): 3809-3822, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991935

RESUMO

Abnormal cerebral accumulation of amyloid-beta peptide (Aß) is a major hallmark of Alzheimer's disease. Non-invasive monitoring of Aß deposits enables assessing the disease burden in patients and animal models mimicking aspects of the human disease as well as evaluating the efficacy of Aß-modulating therapies. Previous in vivo assessments of plaque load have been predominantly based on macroscopic fluorescence reflectance imaging (FRI) and confocal or two-photon microscopy using Aß-specific imaging agents. However, the former method lacks depth resolution, whereas the latter is restricted by the limited field of view preventing a full coverage of the large brain region. Here, we utilized a fluorescence molecular tomography (FMT)-magnetic resonance imaging (MRI) pipeline with the curcumin derivative fluorescent probe CRANAD-2 to achieve full 3D brain coverage for detecting Aß accumulation in the arcAß mouse model of cerebral amyloidosis. A homebuilt FMT system was used for data acquisition, whereas a customized software platform enabled the integration of MRI-derived anatomical information as prior information for FMT image reconstruction. The results obtained from the FMT-MRI study were compared to those from conventional planar FRI recorded under similar physiological conditions, yielding comparable time courses of the fluorescence intensity following intravenous injection of CRANAD-2 in a region-of-interest comprising the brain. In conclusion, we have demonstrated the feasibility of visualizing Aß deposition in 3D using a multimodal FMT-MRI strategy. This hybrid imaging method provides complementary anatomical, physiological and molecular information, thereby enabling the detailed characterization of the disease status in arcAß mouse models, which can also facilitate monitoring the efficacy of putative treatments targeting Aß.

3.
Sci Adv ; 8(9): eabj0112, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245123

RESUMO

Microglia interact with neurons to facilitate synapse plasticity; however, signal(s) contributing to microglia activation for synapse elimination in pathology are not fully understood. Here, using in vitro organotypic hippocampal slice cultures and transient middle cerebral artery occlusion (MCAO) in genetically engineered mice in vivo, we report that at 24 hours after ischemia, microglia release brain-derived neurotrophic factor (BDNF) to downregulate glutamatergic and GABAergic synapses within the peri-infarct area. Analysis of the cornu ammonis 1 (CA1) in vitro shows that proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold stability through p75 neurotrophin receptor (p75NTR) and tropomyosin receptor kinase B (TrkB) receptors, respectively. After MCAO, we report that in the peri-infarct area and in the corresponding contralateral hemisphere, similar neuroplasticity occurs through microglia activation and gephyrin phosphorylation at serine-268 and serine-270 in vivo. Targeted deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point mutations protects against ischemic brain damage, neuroinflammation, and synapse downregulation after MCAO.


Assuntos
Isquemia Encefálica , Fator Neurotrófico Derivado do Encéfalo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Infarto , Camundongos , Microglia , Receptor trkB , Serina , Sinapses
4.
Mol Imaging Biol ; 24(5): 700-709, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642898

RESUMO

PURPOSE: Stroke is one of the most prevalent vascular diseases. Non-invasive molecular imaging methods have the potential to provide critical insights into the temporal dynamics and follow alterations of receptor expression and metabolism in ischemic stroke. The aim of this study was to assess the cannabinoid type 2 receptor (CB2R) levels in transient middle cerebral artery occlusion (tMCAO) mouse models at subacute stage using positron emission tomography (PET) with our novel tracer [18F]RoSMA-18-d6 and structural imaging by magnetic resonance imaging (MRI). PROCEDURES: Our recently developed CB2R PET tracer [18F]RoSMA-18-d6 was used for imaging neuroinflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of CB2R and other inflammatory markers were analyzed by quantitative real-time polymerase chain reaction using brain tissues from tMCAO (1 h occlusion) and sham-operated mice. [18F]fluorodeoxyglucose (FDG) was included for evaluation of the cerebral metabolic rate of glucose (CMRglc). In addition, diffusion-weighted imaging and T2-weighted imaging were performed for anatomical reference and delineating the lesion in tMCAO mice. RESULTS: mRNA expressions of inflammatory markers TNF-α, Iba1, MMP9 and GFAP, CNR2 were increased to 1.3-2.5 fold at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of tMCAO mice, while mRNA expression of the neuronal marker MAP-2 was markedly reduced to ca. 50 %. Reduced [18F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h after reperfusion. Although higher activity of [18F]RoSMA-18-d6 in ex vivo biodistribution studies and higher standard uptake value ratio (SUVR) were detected in the ischemic ipsilateral compared to contralateral striatum in tMCAO mice, the in vivo specificity of [18F]RoSMA-18-d6 was confirmed only in the CB2R-rich spleen. CONCLUSIONS: This study revealed an increased [18F]RoSMA-18-d6 measure of CB2R and a reduced [18F]FDG measure of CMRglc in the ischemic striatum of tMCAO mice at subacute stage. [18F]RoSMA-18-d6 might be a promising PET tracer for detecting CB2R alterations in animal models of neuroinflammation without neuronal loss.


Assuntos
Isquemia Encefálica , Canabinoides , Animais , Camundongos , Fluordesoxiglucose F18 , Metaloproteinase 9 da Matriz , Receptores de Canabinoides , Fator de Necrose Tumoral alfa , Distribuição Tecidual , Isquemia Encefálica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Modelos Animais de Doenças , Isquemia , Glucose , RNA Mensageiro , RNA
5.
Front Mol Neurosci ; 14: 726133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539344

RESUMO

One important function of GABA B receptors is the control of neuronal activity to prevent overexcitation and thereby excitotoxic death, which is a hallmark of cerebral ischemia. Consequently, sustained activation of GABA B receptors with the selective agonist baclofen provides neuroprotection in in vitro and in vivo models of cerebral ischemia. However, excitotoxic conditions severely downregulate the receptors, which would compromise the neuroprotective effectiveness of baclofen. On the other hand, recent work suggests that sustained activation of GABA B receptors stabilizes receptor expression. Therefore, we addressed the question whether sustained activation of GABA B receptors reduces downregulation of the receptor under excitotoxic conditions and thereby preserves GABA B receptor-mediated inhibition. In cultured neurons subjected to oxygen and glucose deprivation (OGD), to mimic cerebral ischemia, GABA B receptors were severely downregulated. Treatment of the cultures with baclofen after OGD restored GABA B receptor expression and reduced loss of neurons. Restoration of GABA B receptors was due to enhanced fast recycling of the receptors, which reduced OGD-induced sorting of the receptors to lysosomal degradation. Utilizing the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischemia, we verified the severe downregulation of GABA B receptors in the affected cortex and a partial restoration of the receptors after systemic injection of baclofen. Restored receptor expression recovered GABA B receptor-mediated currents, normalized the enhanced neuronal excitability observed after MCAO and limited progressive loss of neurons. These results suggest that baclofen-induced restoration of GABA B receptors provides the basis for the neuroprotective activity of baclofen after an ischemic insult. Since GABA B receptors regulate multiple beneficial pathways, they are promising targets for a neuroprotective strategy in acute cerebral ischemia.

6.
Photoacoustics ; 23: 100285, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34354924

RESUMO

The abnormal deposition of fibrillar beta-amyloid (Aß) deposits in the brain is one of the major histopathological hallmarks of Alzheimer's disease (AD). Here, we characterized curcumin-derivative CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of brain Aß deposits in the arcAß mouse model of AD cerebral amyloidosis. CRANAD-2 showed a specific and quantitative detection of Aß fibrils in vitro, even in complex mixtures, and it is capable of distinguishing between monomeric and fibrillar forms of Aß. In vivo epi-fluorescence microscopy and optoacoustic tomography after intravenous CRANAD-2 administration demonstrated higher cortical retention in arcAß compared to non-transgenic littermate mice. Immunohistochemistry showed co-localization of CRANAD-2 and Aß deposits in arcAß mouse brain sections, thus verifying the specificity of the probe. In conclusion, we demonstrate suitability of CRANAD-2 for optical detection of Aß deposits in animal models of AD pathology, which facilitates mechanistic studies and the monitoring of putative treatments targeting Aß deposits.

7.
Neurophotonics ; 5(1): 015005, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29531962

RESUMO

Oxygen metabolism and matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Using multispectral optoacoustic tomography (MSOT) imaging, we visualized in vivo changes in cerebral tissue oxygenation during 1 h of transient middle cerebral artery occlusion (tMCAO) and at 48 h after reperfusion together with MMP activity using an MMP-activatable probe. The deoxyhemoglobin, oxyhemoglobin, and MMP signals were coregistered with structural magnetic resonance imaging data. The ipsi-/contralateral ratio of tissue oxygen saturation ([Formula: see text]) was significantly reduced during 1 h of tMCAO and recovered after 48 h of reperfusion in tMCAO compared with sham-operated mice ([Formula: see text] to 10 per group). A higher ipsi-/contralateral MMP signal ratio was detected at 48 h after reperfusion in the lesioned brain regions of tMCAO compared with the sham-operated animal ([Formula: see text] to 6 per group). Ex vivo near-infrared fluorescence imaging of MMP signal in brain slices was used to validate in vivo MSOT measurements. In conclusion, noninvasive MSOT imaging can provide visualization of hemodynamic alterations and MMP activity in a mouse model of cerebral ischemia.

8.
Transl Stroke Res ; 9(6): 608-621, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29399739

RESUMO

Accumulation of neutrophils in the brain is a hallmark of cerebral ischemia and considered central in exacerbating tissue injury. Intercellular adhesion molecule (ICAM)-1 is upregulated on brain endothelial cells after ischemic stroke and considered pivotal in neutrophil recruitment as ICAM-1-deficient mouse lines were found protected from experimental stroke. Translation of therapeutic inhibition of ICAM-1 into the clinic however failed. This prompted us to investigate stroke pathogenesis in Icam1tm1Alb C57BL/6 mutants, a true ICAM-1null mouse line. Performing transient middle cerebral artery occlusion, we found that absence of ICAM-1 did not ameliorate stroke pathology at acute time points after reperfusion. Near-infrared imaging showed comparable accumulation of neutrophils in the ischemic hemispheres of ICAM-1null and wild type C57BL/6 mice. We also isolated equal numbers of neutrophils from the ischemic brains of ICAM-1null and wild type C57BL/6 mice. Immunostaining of the brains showed neutrophils to equally accumulate in the leptomeninges and brain parenchymal vessels of ICAM-1null and wild type C57BL/6 mice. In addition, the lesion size was comparable in ICAM-1null and wild type mice. Our study demonstrates that absence of ICAM-1 neither inhibits cerebral ischemia-induced accumulation of neutrophils in the brain nor provides protection from ischemic stroke.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Neutrófilos/fisiologia , Animais , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica/fisiologia , Hemorragia/etiologia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/cirurgia , Molécula 1 de Adesão Intercelular/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/transplante , Reperfusão , Traumatismo por Reperfusão/patologia , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Transl Stroke Res ; 9(4): 426-435, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29177950

RESUMO

Quantitative susceptibility mapping (QSM) has been recently introduced as a novel MRI post-processing technique of gradient recalled echo (GRE) data. QSM is useful in depicting both brain anatomy and for detecting abnormalities. Its utility in the context of ischemic stroke has, however, not been extensively characterized so far. In this study, we explored the potential of QSM to characterize vascular and tissue changes in the transient middle cerebral artery occlusion (tMCAO) mouse model of cerebral ischemia. We acquired GRE data of mice brains at different time points after tMCAO, from which we computed QSM and MR frequency maps, and compared these maps with diffusion imaging and multi-slice multi-echo imaging data acquired in the same animals. Prominent vessels with increased magnetic susceptibility were visible surrounding the lesion on both frequency and magnetic susceptibility maps at all time points (mostly visible at > 12 h after reperfusion). Immunohistochemistry revealed the presence of compressed capillaries and dilated larger vessels, suggesting that the appearance of prominent vessels after reestablishment of reperfusion may serve compensatory purposes. In addition, on both contrast maps, tissue regions of decreased magnetic susceptibility were observed at 24 and 48 h after reperfusion that were distinctly different from the lesions seen on maps of the apparent diffusion coefficient and T 2 relaxation time constant. Since QSM can be extracted as an add-on from GRE data and thus requires no additional acquisition time in the course of acute stroke MRI examination, it may provide unique and complementary information during the course of acute stroke MRI examinations.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
10.
Front Neurol ; 8: 85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28348545

RESUMO

Middle cerebral artery occlusion is the most common model of focal cerebral ischemia in the mouse. In the surgical procedure, the external carotid artery (ECA) is ligated; however, its effect on the tissue supplied by the vessel has not been described so far. C57BL/6 mice underwent 1 h of transient MCAO (tMCAO) or sham surgery. Multi-spectral optoacoustic tomography was employed at 30 min after surgery to assess oxygenation in the temporal muscles. Microstructural changes were assessed with magnetic resonance imaging and histological examination at 24 h and 48 h after surgery. Ligation of the ECA resulted in decreased oxygenation of the left temporal muscle in most sham-operated and tMCAO animals. Susceptible mice of both groups exhibited increased T2 relaxation times in the affected muscle with histological evidence of myofibre degeneration, interstitial edema, and neutrophil influx. Ligatures had induced an extensive neutrophil-dominated inflammatory response. ECA ligation leads to distinct hypoxic degenerative changes in the tissue of the ECA territory and to ligature-induced inflammatory processes. An impact on outcome needs to be considered in this stroke model.

11.
J Cereb Blood Flow Metab ; 37(8): 2833-2847, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27789786

RESUMO

Near-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status. Adoptive transfer of labelled neutrophils in C57BL/6 mice before surgery resulted in higher fluorescence intensities over the ischaemic hemisphere in tMCAO mice with NIRF imaging when compared with controls, corroborated by ex vivo detection of labelled neutrophils using fluorescence microscopy. NIRF imaging showed that neutrophils started to accumulate immediately after tMCAO, peaking at 18 h, and were still visible until 48 h after reperfusion. Our data revealed accumulation of neutrophils also in extracranial tissue, indicating damage in the external carotid artery territory in the tMCAO model. Antibody-mediated inhibition of α4-integrins did reduce fluorescence signals at 18 and 24, but not at 48 h after reperfusion, compared with control treatment animals. Antibody treatment reduced cerebral lesion volumes by 19%. In conclusion, the non-invasive nature of NIRF imaging allows studying the dynamics of neutrophil recruitment and its modulation by targeted interventions in the mouse brain after transient experimental cerebral ischaemia.


Assuntos
Encéfalo/diagnóstico por imagem , Artéria Carótida Externa/diagnóstico por imagem , Ataque Isquêmico Transitório/diagnóstico por imagem , Monitorização Fisiológica/métodos , Infiltração de Neutrófilos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Artéria Carótida Externa/imunologia , Modelos Animais de Doenças , Ataque Isquêmico Transitório/imunologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
12.
J Cereb Blood Flow Metab ; 36(9): 1614-24, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26661253

RESUMO

Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAß mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and [Formula: see text] values were discernible across several brain regions in 12-month-old arcAß compared to 6-month-old arcAß mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher [Formula: see text] and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAß mice. No differences in [Formula: see text] and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2-8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced [Formula: see text] and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies.


Assuntos
Angiopatia Amiloide Cerebral/diagnóstico por imagem , Compostos Férricos/farmacocinética , Imageamento por Ressonância Magnética/métodos , Microvasos/patologia , Animais , Angiopatia Amiloide Cerebral/metabolismo , Circulação Cerebrovascular , Meios de Contraste , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...