Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 126: 1-11, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30471483

RESUMO

The growth plate is a cartilaginous layer present from the gestation period until the end of puberty where it ossifies joining diaphysis and epiphysis. During this period several endocrine, autocrine, and paracrine processes within the growth plate are carried out by chondrocytes; therefore, a disruption in cellular functions may lead to pathologies affecting bone development. It is known that electric fields impact the growth plate; however, parameters such as stimulation time and electric field intensity are not well documented. Accordingly, this study presents a histomorphometrical framework to assess the effect of electric fields on chondroepiphysis explants. Bones were stimulated with 3.5 and 7 mV/cm, and for each electric field two exposure times were tested for 30 days (30 min and 1 h). Results evidenced that electric fields increased the hypertrophic zones compared with controls. In addition, a stimulation of 3.5 mV/cm applied for 1 h preserved the columnar cell density and its orientation. Moreover, a pre-hypertrophy differentiation in the center of the chondroepiphysis was observed when explants were stimulated during 1 h with both electric fields. These findings allow the understanding of the effect of electrical stimulation over growth plate organization and how the stimulation modifies chondrocytes morphophysiology.


Assuntos
Condrócitos/citologia , Estimulação Elétrica , Lâmina de Crescimento/crescimento & desenvolvimento , Animais , Proliferação de Células , Células Cultivadas , Condrócitos/patologia , Condrócitos/ultraestrutura , Estimulação Elétrica/instrumentação , Desenho de Equipamento , Fêmur/citologia , Fêmur/crescimento & desenvolvimento , Fêmur/patologia , Fêmur/ultraestrutura , Lâmina de Crescimento/citologia , Lâmina de Crescimento/patologia , Lâmina de Crescimento/ultraestrutura , Úmero/citologia , Úmero/crescimento & desenvolvimento , Úmero/patologia , Úmero/ultraestrutura , Hipertrofia , Osteogênese , Ratos , Ratos Wistar
2.
Biomech Model Mechanobiol ; 17(3): 853-875, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29322335

RESUMO

Long bone formation starts early during embryonic development through a process known as endochondral ossification. This is a highly regulated mechanism that involves several mechanical and biochemical factors. Because long bone development is an extremely complex process, it is unclear how biochemical regulation is affected when dynamic loads are applied, and also how the combination of mechanical and biochemical factors affect the shape acquired by the bone during early development. In this study, we develop a mechanobiological model combining: (1) a reaction-diffusion system to describe the biochemical process and (2) a poroelastic model to determine the stresses and fluid flow due to loading. We simulate endochondral ossification and the change in long bone shapes during embryonic stages. The mathematical model is based on a multiscale framework, which consisted in computing the evolution of the negative feedback loop between Ihh/PTHrP and the diffusion of VEGF molecule (on the order of days) and dynamic loading (on the order of seconds). We compare our morphological predictions with the femurs of embryonic mice. The results obtained from the model demonstrate that pattern formation of Ihh, PTHrP and VEGF predict the development of the main structures within long bones such as the primary ossification center, the bone collar, the growth fronts and the cartilaginous epiphysis. Additionally, our results suggest high load pressures and frequencies alter biochemical diffusion and cartilage formation. Our model incorporates the biochemical and mechanical stimuli and their interaction that influence endochondral ossification during embryonic growth. The mechanobiochemical framework allows us to probe the effects of molecular events and mechanical loading on development of bone.


Assuntos
Biofísica , Simulação por Computador , Modelos Biológicos , Osteogênese , Animais , Cartilagem/fisiologia , Fêmur/anatomia & histologia , Análise de Elementos Finitos , Lâmina de Crescimento/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Camundongos Endogâmicos BALB C , Morfogênese , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Reologia , Estresse Mecânico
3.
In Silico Biol ; 12(3-4): 83-93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26756921

RESUMO

Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.


Assuntos
Cartilagem Articular , Morte Celular , Proliferação de Células , Condrócitos , Modelos Biológicos , Técnicas de Cultura de Células , Humanos , Engenharia Tecidual
4.
Comput Methods Programs Biomed ; 118(1): 59-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453383

RESUMO

Mechanical stimuli play a significant role in the process of long bone development as evidenced by clinical observations and in vivo studies. Up to now approaches to understand stimuli characteristics have been limited to the first stages of epiphyseal development. Furthermore, growth plate mechanical behavior has not been widely studied. In order to better understand mechanical influences on bone growth, we used Carter and Wong biomechanical approximation to analyze growth plate mechanical behavior, and explore stress patterns for different morphological stages of the growth plate. To the best of our knowledge this work is the first attempt to study stress distribution on growth plate during different possible stages of bone development, from gestation to adolescence. Stress distribution analysis on the epiphysis and growth plate was performed using axisymmetric (3D) finite element analysis in a simplified generic epiphyseal geometry using a linear elastic model as the first approximation. We took into account different growth plate locations, morphologies and widths, as well as different epiphyseal developmental stages. We found stress distribution during bone development established osteogenic index patterns that seem to influence locally epiphyseal structures growth and coincide with growth plate histological arrangement.


Assuntos
Desenvolvimento Ósseo/fisiologia , Simulação por Computador , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/fisiologia , Adolescente , Criança , Pré-Escolar , Epífises/embriologia , Epífises/crescimento & desenvolvimento , Epífises/fisiologia , Feminino , Análise de Elementos Finitos , Lâmina de Crescimento/embriologia , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Masculino , Modelos Biológicos , Osteogênese/fisiologia , Gravidez , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...