Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736738

RESUMO

It is known that poorly performed fertigation directly impacts on tomato production and biometric components. In addition, consumers are also affected by interrelated characteristics that interfere with the acceptability of the fruit, such as the physicochemical parameters and nutrients in the fruit. Thus, eco-friendly technologies, such as irrigation with ultra-low frequency electromagnetic treated-water, which attenuates the inadequate management of fertigation, are essential to improve marketable fruit yields. Thus, the objective of the present work was to investigate the impact of treated water with very low-frequency electromagnetic resonance fields in physical, chemical and nutritional parameters at different nutrient solution strengths in tomato fruits. In this study, experiments were carried out in randomized blocks and five doses of fertigation were used (1.5; 2.5; 4.0; 5.5; and 7.0 dS m−1), employing two types of water: electromagnetically treated and untreated. It can be seen that the fertigation affected some parameters, mainly the number of fruits with blossom-end rot, fruit size, and weight. Variance analysis (ANOVA) was performed with the subsequent use of the Tukey test. In all statistical tests, a confidence level of 95% was considered. The soluble solids content increased by 28% as a function of the fertigation doses. The electromagnetically treated water reduced the number of fruits with blossom-end rot by 35% (p < 0.05). Overall, electromagnetic water improved the physicochemical quality parameters and the nutritional status of tomato fruits. Thus, this study demonstrated that green technology could leverage tomato fruit production and quality.

2.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200414

RESUMO

Numerous environmental and endogenous factors affect the level of genetic diversity in natural populations. Genetic variability is the cornerstone of evolution and adaptation of species. However, currently, more and more plant species and local varieties (landraces) are on the brink of extinction due to anthropopression and climate change. Their preservation is imperative for the sake of future breeding programs. Gene banks have been created worldwide to conserve different plant species of cultural and economic importance. Many of them apply cryopreservation, a conservation method in which ultra-low temperatures (-135 °C to -196 °C) are used for long-term storage of tissue samples, with little risk of variation occurrence. Cells can be successfully cryopreserved in liquid nitrogen (LN) when the adverse effect of ice crystal formation and growth is mitigated by the removal of water and the formation of the so-called biological glass (vitrification). This state can be achieved in several ways. The involvement of key cold-regulated genes and proteins in the acquisition of cold tolerance in plant tissues may additionally improve the survival of LN-stored explants. The present review explains the importance of cryostorage in agronomy and presents an overview of the recent works accomplished with this strategy. The most widely used cryopreservation techniques, classic and modern cryoprotective agents, and some protocols applied in crops are considered to understand which parameters provide the establishment of high quality and broadly applicable cryopreservation. Attention is also focused on the issues of genetic integrity and functional genomics in plant cryobiology.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Criopreservação/métodos , Crioprotetores/farmacologia , Melhoramento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Vitrificação , Protoplastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...