Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(37): 7677-7681, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732338
2.
Chirality ; 35(9): 586-618, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550220

RESUMO

The nonresonant optical activity of two highly flexible aliphatic amines, (2R)-3-methyl-2-butanamine (R-MBA) and (2R)-(3,3)-dimethyl-2-butanamine (R-DMBA), has been probed under isolated and solvated conditions to examine the roles of conformational isomerism and to explore the influence of extrinsic perturbations. The optical rotatory dispersion (ORD) measured in six solvents presented uniformly negative rotatory powers over the 320-590 nm region, with the long-wavelength magnitude of chiroptical response growing nearly monotonically as the dielectric constant of the surroundings diminished. The intrinsic specific optical rotation, α λ T (in deg dm-1 [g/mL]-1 ), extracted for ambient vapor-phase samples of R-MBA [-11.031(98) and -2.29 (11)] and R-DMBA [-9.434 (72) and -1.350 (48)] at 355 and 633 nm were best reproduced by counterintuitive solvents of high polarity (yet low polarizability) like acetonitrile and methanol. Attempts to interpret observed spectral signatures quantitatively relied on the linear-response frameworks of density-functional theory (B3LYP, cam-B3LYP, and dispersion-corrected analogs) and coupled-cluster theory (CCSD), with variants of the polarizable continuum model (PCM) deployed to account for the effects of implicit solvation. Building on the identification of several low-lying equilibrium geometries (nine for R-MBA and three for R-DMBA), ensemble-averaged ORD profiles were calculated at T = 300 K by means of the independent-conformer ansatz, which enabled response properties predicted for the optimized structure of each isomer to be combined through Boltzmann-weighted population fractions derived from corresponding relative internal-energy or free-energy values, the latter of which stemmed from composite CBS-APNO and G4 analyses. Although reasonable accord between theory and experiment was realized for the isolated (vapor-phase) species, the solution-phase results were less satisfactory and tended to degrade progressively as the solvent polarity increased. These trends were attributed to solvent-mediated changes in structural parameters and energy metrics for the transition states that separate and putatively isolate the equilibrium conformations supported by the ground electronic potential-energy surface, with the resulting displacement of barrier locations and/or decrease of barrier heights compromising the underlying premise of the independent-conformer ansatz.

3.
J Phys Chem Lett ; 14(28): 6368-6375, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37418693

RESUMO

Understanding the dynamics of proton transfer along low-barrier hydrogen bonds remains an outstanding challenge of great fundamental and practical interest, reflecting the central role of quantum effects in reactions of chemical and biological importance. Here, we combine ab initio calculations with the semiclassical ring-polymer instanton method to investigate tunneling processes on the ground electronic state of 6-hydroxy-2-formylfulvene (HFF), a prototypical neutral molecule supporting low-barrier hydrogen-bonding. The results emerging from a full-dimensional ab initio instanton analysis reveal that the tunneling path does not pass through the instantaneous transition-state geometry. Instead, the tunneling process involves a multidimensional reaction coordinate with concerted reorganization of the heavy-atom skeletal framework to substantially reduce the donor-acceptor distance and drive the ensuing intramolecular proton-transfer event. The predicted tunneling-induced splittings for HFF isotopologues are in good agreement with experimental findings, leading to percentage deviations of only 20-40%. Our full-dimensional results allow us to characterize vibrational contributions along the tunneling path, highlighting the intrinsically multidimensional nature of the attendant hydron-migration dynamics.

4.
J Phys Chem A ; 125(25): 5562-5584, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142836

RESUMO

The dispersive optical activity of two saturated cyclic amines, (R)-2-methylpyrrolidine (R-2MPY) and (S)-2-methylpiperidine (S-2MPI), has been interrogated under isolated and solvated conditions to elucidate the roles of large-amplitude motion associated with nitrogen-center inversion and ring-puckering dynamics. Experimental optical rotatory dispersion profiles were almost mirror images of one another and displayed parallel solvent dependencies. Quantum-chemical analyses built on density-functional and coupled-cluster methods revealed four low-lying conformers for each molecule, which are distinguished by axial/equatorial orientations of their amino hydrogens and methyl substituents. Chiroptical signatures predicted for these species were combined through an independent-conformer ansatz to simulate the ensemble-averaged response, with a polarizable continuum model (PCM) being used to treat implicit solute-solvent interactions. The intrinsic behavior observed for isolated (gaseous) R-2MPY and S-2MPI was reproduced best by merging coupled-cluster (CCSD) estimates of rotatory powers with thermal population fractions deduced from complete basis set (CBS-APNO) free-energy calculations. Although prior claims of sizable chiroptical contributions arising from helically twisted (chiral) heterocyclic frameworks could be discounted, less satisfactory agreement between experiment and theory was realized for solution phases. Response properties sustained modest isomer-dependent changes in the presence of PCM solvation, but the corresponding energy metrics showed systematic trends, whereby structures having larger electric-dipole moments were stabilized preferentially in media of high polarity. Despite the fact that R-2MPY conformations were predicted to undergo a progressive reordering of their relative energies across the six solvents of interest, S-2MPI was found to exhibit more pronounced solvent-induced perturbations at long wavelengths (viz., in regions far removed from electronic resonances). Experimental results are discussed in terms of the distinct ring-puckering mechanisms for R-2MPY and S-2MPI, which are expected to be dominated by hindered pseudorotation among envelope/twist motifs and semi-inversion between chairlike antipodes, respectively.

5.
J Phys Chem A ; 123(30): 6506-6526, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260311

RESUMO

To elucidate low-barrier hydrogen-bonding (LBHBing) motifs and their ramifications for hydron-migration dynamics, the Ã1B2-X̃1A1 (π* ← π) absorption system of 6-hydroxy-2-formylfulvene (HFF) and its monodeuterated isotopolog (HFF-d) has been probed under free-jet expansion conditions through synergistic application of fluorescence-based laser spectroscopy and quantum-chemical calculations. Neither the donor-acceptor distance nor the proton-transfer barrier is predicted to change markedly between the X̃1A1 and Ã1B2 manifolds, yet a radical alteration in the nature of the reaction coordinate, whereby the planar (C2v) transition-state configuration of the former is supplanted by a notably aplanar (C2) form in the latter, is suggested to take place following π* ← π electron promotion (owing, in part, to attendant rearrangements of π-electron conjugation about the molecular framework). In contrast to the strongly perturbed vibrational landscape (commensurate with LBHBing) reported for the X̃1A1 potential surface, the present measurements have revealed surprisingly regular patterns of Ã1B2 vibronic structure which are devoid of obvious band shifts/splittings that would be indicative of efficient proton-transfer processes. Detailed analyses enabled a total of 41 (6) and 28 (5) excited-state vibrational levels (fundamentals) to be assigned for HFF and HFF-d, with extensive activity found for modes involving displacement of the seven-membered chelate ring that harbors the O-H···O reaction center. Quantitative simulations of partially resolved rotational contours for the HFF origin band showed the transition dipole moment to possess hybrid type-a/b character, thereby allowing the tunneling-induced bifurcation of the vibrationless Ã1B2 level to be extracted, Δ0à = 0.119(11) cm-1. This represents an enormous (>1000-fold) decrease over the analogous ground-state metric and implies a pronounced quenching of excited-state hydron migration, in keeping with the kinematic penalties that would be exacted by requisite heavy-atom motion along a putatively aplanar reaction coordinate.

6.
Phys Chem Chem Phys ; 21(7): 3644-3655, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30383044

RESUMO

The dispersive optical activity for aqueous solutions of non-rigid (R)-glycidyl methyl ether (R-GME) has been explored synergistically from experimental and theoretical perspectives. Density functional theory analyses performed with the polarizable continuum model for implicit solvation identified nine low-lying stable conformers that are interconverted by rotation about two large-amplitude torsional coordinates. The antagonistic chiroptical signatures predicted for these structural isomers were averaged under a Boltzmann-weighting ansatz to estimate the behavior expected for a thermally equilibrated ensemble. This led to optical rotatory dispersion profiles that reproduced the overall shape of observations but failed to achieve uniform agreement with measured specific-rotation values even when anharmonic vibrational corrections were applied. A mixed QM/FQ paradigm, whereby quantum-mechanical (QM) calculations of optical activity were combined with classical molecular dynamics simulations of explicit solvation that included mutual-polarization effects by means of fluctuating charges (FQ), was enlisted to elucidate the microsolvation environment and gauge its impact upon conformer distributions and response properties. Although quantitative accord with experiments remained elusive, this approach revealed strong variations in the magnitude and sign of rotatory powers for R-GME as the configuration of surrounding water molecules evolved, thereby highlighting the inherently dynamical nature of the solvated chiroptical response, calling into question the validity of "static" descriptions based on the presumption of distinct energy minima, and giving insight into the inherent complexity posed by the modeling of such properties for solvated systems.

7.
J Phys Chem Lett ; 9(17): 4949-4954, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30101590

RESUMO

Despite their importance in diverse chemical and biochemical processes, low-barrier hydrogen bonds remain elusive targets to classify and interpret spectroscopically. Here the correlated nature of hydrogen bonding and proton transfer in the low-barrier regime has been probed for the ground and excited electronic states of 6-hydroxy-2-formylfulvene by acquiring jet-cooled fluorescence spectra of the parent and monodeuterated isotopologs. While excited-state profiles reveal regular vibronic patterns devoid of obvious dynamical signatures, their ground-state counterparts display a radically altered energy landscape characterized by spectral bifurcations comparable in magnitude to typical vibrational spacings (>100 cm-1). Quantitative analyses yield unusual deuterium kinetic isotope effects that straddle limiting values attributed to above-barrier vibration and below-barrier tunneling of the proton adjoining donor/acceptor sites. Our findings provide compelling experimental evidence for ultrafast hydron-migration events commensurate with the onset of low-barrier hydrogen bonding and afford a trenchant glimpse of molecular phenomena taking place at the "tipping point" between disparate dynamical regimes.

8.
J Chem Theory Comput ; 14(3): 1554-1563, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29466664

RESUMO

We present a new approach to importance sampling in diffusion Monte-Carlo (DMC) simulations of vibrational excited states whereby the trial wave functions for low-energy states are incorporated into the diffusion equations so as to enforce their orthogonality. For the model systems examined here, simple variational wave functions based on the vibrational self-consistent field (VSCF) and the simplest vibrational configuration interaction (VCI) are effective in importance sampling provided that internal coordinates used in the underlying one-particle functions have been variationally optimized. The resulting model yields results comparable in accuracy to the best unguided DMC calculations without requiring an a priori choice of coordinates to specify nodal hyperplanes.

9.
Chirality ; 30(4): 383-395, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29419897

RESUMO

A comparative theoretical and experimental study of dispersive optical activity is presented for a set of small, rigid organic molecules in gas and solution phases. Target species were chosen to facilitate wavelength-resolved measurements of specific rotation in rarefied vapors and in organic solvents having different polarities, while avoiding complications due to conformational flexibility. Calculations were performed with two density functionals (B3LYP and CAM-B3LYP) and with the coupled-cluster singles and doubles (CCSD) ansatz, and solvent effects were included through use of the polarizable continuum model (PCM). Across the various theoretical methods surveyed, CCSD with the modified velocity gauge provided the best overall performance for both isolated and solvated conditions. Zero-point vibrational corrections to equilibrium calculations of chiroptical response tended to improve agreement with gas-phase experiments, but the quality of performance realized for solutions varied markedly. Direct comparison of measured and predicted specific-rotation suggests that PCM, in general, is not able to reproduce attendant solvent shifts (neither between gas and solution phases nor among solvents) and fares better in estimating actual medium-dependent values of this property (although the error is rather system dependent). Thus, more elaborate solvation models seem necessary for a proper theoretical description of solvation in dispersive optical activity.

10.
J Phys Chem A ; 121(43): 8251-8266, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28968501

RESUMO

The dispersive optical activity of a homoconjugated bicyclic diene, (R)-methylene norbornene (R-MNB), was interrogated under complementary vapor-phase and solution-phase conditions to elucidate the structural/electronic provenance of its unusual chiroptical signatures and to explore the marked influence of environmental perturbations. The intrinsic (isolated-molecule) values of specific rotation measured at 355 and 633 nm (1623.5 ± 5.5 and 390.4 ± 3.7 deg dm-1 (g/mL)-1) were found to be factors of 3.9 and 2.1 smaller in magnitude than analogous quantities obtained for the kindred enone, (R)-norbornenone (R-NBO), reflecting, in part, the loss of prominent magnetic-dipole contributions from the C═O moiety and the exclusion of electron delocalization from the oxygen lone pairs. The wavelength-resolved rotatory powers of R-MNB were enhanced dramatically (by ∼40% on average) upon dissolution in any of the four common solvents targeted by the present study (acetonitrile, di-n-butylether, cyclohexane, and chloroform), yet displayed only a slight dependence on the exact nature of the surrounding liquid (±2.7% variation from the mean at 589.3 nm). Quantum-chemical calculations built upon the linear-response frameworks of density-functional theory and coupled-cluster theory were enlisted to interpret experimental results, with the substantial effects incurred by nonspecific solvation phenomena being explored through use of polarizable continuum models and bulk property-response relationships. Aside from enumerating the varied quality of agreement attained between computational predictions and polarimetric measurements, these efforts have found that refractive-index correlations, akin to those embodied in the venerable (albeit often discounted) Lorentz local-field correction, afford a viable means of linking the chiroptical behavior of R-MNB across phases.

11.
J Chem Phys ; 147(4): 044110, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28764364

RESUMO

A vibrational SCF model is presented in which the functions forming the single-mode functions in the product wavefunction are expressed in terms of internal coordinates and the coordinates used for each mode are optimized variationally. This model involves no approximations to the kinetic energy operator and does not require a Taylor-series expansion of the potential. The non-linear optimization of coordinates is found to give much better product wavefunctions than the limited variations considered in most previous applications of SCF methods to vibrational problems. The approach is tested using published potential energy surfaces for water, ammonia, and formaldehyde. Variational flexibility allowed in the current ansätze results in excellent zero-point energies expressed through single-product states and accurate fundamental transition frequencies realized by short configuration-interaction expansions. Fully variational optimization of single-product states for excited vibrational levels also is discussed. The highlighted methodology constitutes an excellent starting point for more sophisticated treatments, as the bulk characteristics of many-mode coupling are accounted for efficiently in terms of compact wavefunctions (as evident from the accurate prediction of transition frequencies).

12.
J Chem Phys ; 145(20): 204303, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908108

RESUMO

The near-ultraviolet π*←π absorption system of weakly bound complexes formed between tropolone (TrOH) and formic acid (FA) under cryogenic free-jet expansion conditions has been interrogated by exploiting a variety of fluorescence-based laser-spectroscopic probes, with synergistic quantum-chemical calculations built upon diverse model chemistries being enlisted to unravel the structural and dynamical properties of the pertinent ground [X̃1A'] and excited [Ã1A'π*π] electronic states. For binary TrOH ⋅ FA adducts, the presence of dual hydrogen-bond linkages gives rise to three low-lying isomers designated (in relative energy order) as INT, EXT1, and EXT2 depending on whether docking of the FA ligand to the TrOH substrate takes place internal or external to the five-membered reaction cleft of tropolone. While the symmetric double-minimum topography predicted for the INT potential surface mediates an intermolecular double proton-transfer event, the EXT1 and EXT2 structures are interconverted by an asymmetric single proton-transfer process that is TrOH-centric in nature. The Ã-X̃ origin of TrOH ⋅ FA at ν̃00=27 484.45cm-1 is displaced by δν̃00=+466.76cm-1 with respect to the analogous feature for bare tropolone and displays a hybrid type - a/b rotational contour that reflects the configuration of binding. A comprehensive analysis of vibrational landscapes supported by the optically connected X̃1A' and Ã1A'π*π manifolds, including the characteristic isotopic shifts incurred by partial deuteration of the labile TrOH and FA protons, has been performed leading to the uniform assignment of numerous intermolecular (viz., modulating hydrogen-bond linkages) and intramolecular (viz., localized on monomer subunits) degrees of freedom. The holistic interpretation of all experimental and computational findings affords compelling evidence that an external-binding motif (attributed to EXT1), rather than the thermodynamically more stable cleft-bound (INT) form, was the carrier of fluorescence signals observed during the present work.

13.
Acta Crystallogr C Struct Chem ; 72(Pt 10): 730-737, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27703119

RESUMO

Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π-π, C-H...π, or ion-π interactions. The organic salt (TrOH·iBA) formed by a facile proton-transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7-oxocyclohepta-1,3,5-trien-1-olate, C4H12N+·C7H5O2-, has been investigated by X-ray crystallography, with complementary quantum-chemical and statistical-database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice-packing phenomena. The crystal structure deduced from low-temperature diffraction measurements displays extensive hydrogen-bonding networks, yet shows little evidence of the aryl forces (viz. π-π, C-H...π, and ion-π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton-donating and proton-accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven-membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen-bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor-acceptor distances of any troponoid-based complex, combined with unambiguous signatures of enhanced proton-delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.

14.
J Phys Chem A ; 119(30): 8311-27, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26120748

RESUMO

The dispersive optical activity of (R)-(-)-glycidyl methyl ether (R-GME) has been interrogated under ambient vapor-phase and solution-phase conditions, with quantum-chemical analyses built on density functional (B3LYP and CAM-B3LYP) and coupled-cluster (CCSD) implementations of linear-response theory exploited to interpret experimental findings. Inherent flexibility of the heavy atom skeleton leads to nine low-lying structural isomers that possess distinct chiroptical and physicochemical properties, as evinced by marked changes in the magnitude and the sign of rotatory powers observed in various media. These species are interconverted by independent motion along two large-amplitude torsional coordinates and are stabilized differentially by interaction with the surroundings, thereby reapportioning their relative contributions to the collective response evoked from a thermally equilibrated ensemble. The intrinsic behavior exhibited by isolated (vapor-phase) R-GME molecules was calculated through use of both conformer-averaging and restricted vibrational-averaging procedures, the former affording moderately good agreement with measurements of optical rotatory dispersion (ORD) and the latter providing strong evidence for sizable effects arising from vibrational degrees of freedom. A similar conformer-averaging ansatz based on the polarizable-continuum model (PCM) for implicit solvation was deployed to elucidate R-GME specific-rotation parameters acquired for six dilute solutions. This approach gave reasonable predictions for sodium D-line (589.3 nm) experiments performed in the extremes of solvent polarity represented by cyclohexane and acetonitrile but failed to reproduce the overall shape of ORD profiles and suggested more complex processes might be involved in the case of an aromatic medium.

15.
J Phys Chem A ; 118(26): 4863-71, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24937353

RESUMO

Measurements and calculations of specific rotation are indispensable for the characterization of chiral molecules and are now performed routinely. However, the factors that determine the magnitude of this property are still not well-understood. The anomalously large specific rotation of (1S,4S)-norbornenone, an outstanding puzzle for over three decades, offers the chance to examine these factors in detail. The present work provides an explanation for the unusual behavior of this molecule in terms of interactions between chemical groups and electronic excited-state transition properties by means of ab initio density functional theory and coupled cluster theory calculations. We show that one can focus on the first excited state and examine the relative orientation of its electric and magnetic transition dipole moments. The contribution of the two transition moments of this electronic state to the specific rotation in a sum-over-states formalism reveals a constructive interaction that is possible only when the two chromophores in norbornenone (C═O and C═C) are in-plane and pointing away from each other. This is due to a small but non-negligible charge transfer between the chromophores and is consistent with recent results from Autschbach's group [Moore et al., J. Chem. Theory Comput. 2012, 8, 4336-4346]. The analysis in this work improves our understanding of this fundamental property of chiral molecules and may help in the design of other molecules with large specific rotation.

16.
Angew Chem Int Ed Engl ; 53(5): 1386-9, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24375760

RESUMO

The anomalously large chiroptical response of (1R,4R)-norbornenone has been probed under complementary vapor-phase and solution-phase conditions to assess the putative roles of environmental perturbations. Measurements of the specific rotation for isolated (gas-phase) molecules could not be reproduced quantitatively by comprehensive quantum-chemical calculations based on density-functional or coupled-cluster levels of linear-response theory, which suggests that higher-order treatments may be needed to accurately predict such intrinsic behavior. A substantial, yet unexpected, dependence of the dispersive optical activity on the nature (phase) of the surrounding medium has been uncovered, with the venerable Lorentz local-field correction reproducing solvent-mediated trends in rotatory dispersion surprisingly well, whereas more modern polarizable continuum models for implicit solvation performed less satisfactorily.

17.
J Phys Chem A ; 117(47): 12382-400, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24224892

RESUMO

The optical rotatory dispersion of two monocyclic ketones, (R)-3-methylcyclopentanone [R-3MCP] and (R)-3-methylcyclohexanone [R-3MCH], has been investigated under isolated and solvated conditions to explore the role of ring size/morphology and to elucidate the impact of environmental perturbations. Vapor-phase measurements of specific rotation, [α]λT, were performed at 355/633 nm by means of cavity ring-down polarimetry while complementary solution-phase work employed a canonical discrete-wavelength polarimeter to probe five distinct solvents. The magnitude of [α]λT was found to increase upon solvation, albeit to different extents for the two species of interest, with the attendant sign switching between the solution and vapor phases for λ ≥ 510.7 nm in the case of R-3MCH. Quantum-chemical analyses suggest two low-lying conformers to exist for each ketone, distinguished by an equatorial or axial arrangement of the methyl substituent. Linear-response calculations built upon density-functional [DFT(B3LYP)/aug-cc-pVTZ] and coupled-cluster [CCSD/aug-cc-pVDZ] frameworks gave antagonistic chiroptical parameters for these isomers, which were combined with various energy metrics in a conformer-averaging ansatz to simulate the response for a thermally equilibrated ensemble. The intrinsic behavior of R-3MCP was reproduced best by averaging DFT optical-activity predictions according to relative populations deduced from free-energy differences; however, less satisfactory agreement was realized for isolated R-3MCH molecules. The sizable circular birefringence of R-3MCP can be attributed to inherent chirality of its twisted carbon ring whereas the more modest response of R-3MCH stems mainly from the lone stereogenic center. The implicit polarizable continuum model treated solvation effects in R-3MCP with moderate success, but failed to replicate solvent-dependent trends in R-3MCH. The relationship of dispersive optical activity to bulk characteristics of the surrounding medium, including dielectric constant, refractive index, and polarizability, is discussed with the goal of bridging the gap between isolated and solvated chiroptical properties.

18.
J Am Chem Soc ; 135(29): 10837-51, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23822646

RESUMO

We present evidence for Cp* being a sacrificial placeholder ligand in the [Cp*Ir(III)(chelate)X] series of homogeneous oxidation catalysts. UV-vis and (1)H NMR profiles as well as MALDI-MS data show a rapid and irreversible loss of the Cp* ligand under reaction conditions, which likely proceeds through an intramolecular inner-sphere oxidation pathway reminiscent of the reductive in situ elimination of diolefin placeholder ligands in hydrogenation catalysis by [(diene)M(I)(L,L')](+) (M = Rh and Ir) precursors. When oxidatively stable chelate ligands are bound to the iridium in addition to the Cp*, the oxidized precursors yield homogeneous solutions with a characteristic blue color that remain active in both water- and CH-oxidation catalysis without further induction period. Electrophoresis suggests the presence of well-defined Ir-cations, and TEM-EDX, XPS, (17)O NMR, and resonance-Raman spectroscopy data are most consistent with the molecular identity of the blue species to be a bis-µ-oxo di-iridium(IV) coordination compound with two waters and one chelate ligand bound to each metal. DFT calculations give insight into the electronic structure of this catalyst resting state, and time-dependent simulations agree with the assignments of the experimental spectroscopic data. [(cod)Ir(I)(chelate)] precursors bearing the same chelate ligands are shown to be equally effective precatalysts for both water- and CH-oxidations using NaIO4 as chemical oxidant.

19.
Chirality ; 25(10): 606-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23813839

RESUMO

It has been recognized that quantum-chemical predictions of dispersive (nonresonant) chiroptical phenomena are exquisitely sensitive to the periphery of the electronic wavefunction. To further elaborate and potentially exploit this assertion, linear-response calculations of specific optical rotation were performed within the framework of density-functional theory (DFT) by augmenting small basis sets (e.g., STO - 3G and 3 - 21G) for the core and valence electrons with diffuse functions taken from substantially larger bases (e.g., aug-cc-pVXZ where X = D, T, or Q). Of particular interest was the ability of such computationally efficient (augmented small-basis) model chemistries to reproduce results derived from more expensive (canonical large-basis) schemes. The results appear to be quite promising, with the augmented minimal-basis ansatz often yielding wavelength-resolved rotatory powers close to those deduced from standard DFT(B3LYP)/aug-cc-pVXZ treatments. Analogous linear-response analyses were performed by means of coupled-cluster singles and doubles (CCSD) theory, once again leading to augmented small-basis estimates of specific rotation in reasonable accord with their large-basis counterparts. Although CCSD predictions were deemed to be slightly worse than those obtained from DFT, they still were of sufficient quality for such reduced-basis calculations to be considered viable for exploratory work.

20.
J Phys Chem A ; 117(29): 6126-42, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23496231

RESUMO

The origin band of the Ã1B2-X1A1 (π* ← π) absorption system in monodeuterated tropolone (TrOD) has been probed with near-rotational resolution by applying the frequency-domain techniques of polarization-resolved degenerate four-wave mixing (DFWM) spectroscopy under ambient, bulk-gas conditions. Judicious selection of polarization geometries for the incident and detected electromagnetic waves alleviated intrinsic spectral congestion and facilitated dissection of overlapping transitions, thereby enabling refined rotational-tunneling parameters to be extracted for the Ã1B2(π*π) manifold. A tunneling-induced bifurcation of Δ0à = 2.241(14) cm(-1) was measured for the zero-point level of electronically excited TrOD, reflecting the presence of a substantial barrier along the O-D···O ↔ O···D-O reaction coordinate and representing nearly a 10-fold decrease in magnitude over the analogous quantity in the parent (TrOH) isotopologue. Observed trends in hydron-migration rates are discussed in light of the changes in the potential-surface topology sustained from the π* ← π electron promotion and the dynamical effects incurred by selective isotopic modification of the nuclear framework, with similar considerations being applied to interpret rotational constants and inertial defects. Simultaneous analyses performed on an interloping sequence band built upon ν38(b1) gave an excited-state tunneling splitting of Δ(ν38)à = 1.217(61) cm(-1), highlighting the ability of this symmetric, out-of-plane normal mode to inhibit the unimolecular tautomerization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...