Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 855, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995827

RESUMO

Viscoelastic properties of epithelial cells subject to shape changes were monitored by indentation-retraction/relaxation experiments. MDCK II cells cultured on extensible polydimethylsiloxane substrates were laterally stretched and, in response, displayed increased cortex contractility and loss of excess surface area. Thereby, the cells preserve their fluidity but inevitably become stiffer. We found similar behavior in demixed cell monolayers of ZO-1/2 double knock down (dKD) cells, cells exposed to different temperatures and after removal of cholesterol from the plasma membrane. Conversely, the mechanical response of single cells adhered onto differently sized patches displays no visible rheological change. Sacrificing excess surface area allows the cells to respond to mechanical challenges without losing their ability to flow. They gain a new degree of freedom that permits resolving the interdependence of fluidity ß on stiffness [Formula: see text]. We also propose a model that permits to tell apart contributions from excess membrane area and excess cell surface area.


Assuntos
Colesterol , Animais , Membrana Celular/química , Colesterol/análise , Cães , Células Madin Darby de Rim Canino , Reologia , Estresse Mecânico
2.
Phys Rev Lett ; 125(6): 068101, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845697

RESUMO

Shape, dynamics, and viscoelastic properties of eukaryotic cells are primarily governed by a thin, reversibly cross-linked actomyosin cortex located directly beneath the plasma membrane. We obtain time-dependent rheological responses of fibroblasts and MDCK II cells from deformation-relaxation curves using an atomic force microscope to access the dependence of cortex fluidity on prestress. We introduce a viscoelastic model that treats the cell as a composite shell and assumes that relaxation of the cortex follows a power law giving access to cortical prestress, area-compressibility modulus, and the power law exponent (fluidity). Cortex fluidity is modulated by interfering with myosin activity. We find that the power law exponent of the cell cortex decreases with increasing intrinsic prestress and area-compressibility modulus, in accordance with previous finding for isolated actin networks subject to external stress. Extrapolation to zero tension returns the theoretically predicted power law exponent for transiently cross-linked polymer networks. In contrast to the widely used Hertzian mechanics, our model provides viscoelastic parameters independent of indenter geometry and compression velocity.


Assuntos
Actinas/química , Fibroblastos/química , Fibroblastos/citologia , Modelos Biológicos , Actinas/fisiologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Membrana Celular/química , Membrana Celular/fisiologia , Força Compressiva , Cães , Elasticidade , Microscopia de Força Atômica , Miosinas/química , Miosinas/fisiologia , Reologia/métodos , Viscosidade
3.
Soft Matter ; 16(27): 6424-6433, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32588015

RESUMO

Cellular adhesion is an intricate physical process controlled by ligand-receptor affinity, density, mobility, and external forces transmitted through the elastic properties of the cell. As a model for cellular adhesion we study the detachment of cell-sized liposomes and membrane-coated silica beads from supported bilayers using atomic force microscopy. Adhesion between the two surfaces is mediated by the interaction between the adhesive lipid anchored saccharides lactosylceramide and the ganglioside GM3. We found that force-distance curves of liposome detachment have a very peculiar, partially concave shape, reminiscent of the nonlinear extension of polymers. By contrast, detachment of membrane coated beads led to force-distance curves similar to the detachment of living cells. Theoretical modelling of the enforced detachment suggests that the non-convex force curve shape arises from the mobility of ligands provoking a switch of shapes from spherical to unduloidal during detachment.


Assuntos
Lipossomos , Adesão Celular , Ligantes , Membranas , Microscopia de Força Atômica
4.
Soft Matter ; 11(22): 4487-95, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25946988

RESUMO

Indentation of giant liposomes with a conical indenter is described by means of a tension-based membrane model. We found that nonlinear membrane theory neglecting the impact of bending sufficiently describes the mechanical response of liposomes to indentation as measured by atomic force microscopy. Giant vesicles are gently adsorbed on glassy surfaces via avidin-biotin linkages and indented centrally using an atomic force microscope equipped with conventional sharp tips mounted on top of an inverted microscope. Force indentation curves display a nonlinear response that allows to extract pre-stress of the bilayer T0 and the area compressibility modulus KA by computing the contour of the vesicle at a given force. The values for KA of fluid membranes correspond well to what is known from micropipet suction experiments and inferred from membrane undulation monitoring. Assembly of actin shells inside the liposome considerably stiffens the vesicles resulting in significantly larger area compressibility modules. The analysis can be easily extended to different indenter geometries with rotational symmetry.


Assuntos
Actinas/química , Lipossomos/química , Microscopia de Força Atômica , Microscopia Confocal , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...