Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemosphere ; 197: 651-660, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29407829

RESUMO

The contamination of agricultural lands by pesticides is a serious environmental issue. Consequently, the development of bioremediation methods for different active ingredients, such as pyrethroids, is essential. In this study, the enantioselective biodegradation of (±)-lambda-cyhalothrin ((±)-LC) by marine-derived fungi was studied. Experiments were performed with different fungi strains (Aspergillus sp. CBMAI 1829, Acremonium sp. CBMAI 1676, Microsphaeropsis sp. CBMAI 1675 and Westerdykella sp. CBMAI 1679) in 3% malt liquid medium with 100 mg L-1 of (±)-LC. All strains biodegraded this insecticide and the residual concentrations of (±)-LC (79.2-55.2 mg L-1, i.e., 20.8-44.8% biodegradation), their enantiomeric excesses (2-42% ee) and the 3-phenoxybenzoic acid (PBAc) concentrations (0.0-4.1 mg L-1) were determined. In experiments for 28 days of biodegradation in the absence and presence of artificial seawater (ASW) with the most efficient strain Aspergillus sp. CBMAI 1829, increasing concentrations of PBAc with (0.0-4.8 mg L-1) and without ASW (0.0-15.3 mg L-1) were observed. In addition, a partial biodegradation pathway was proposed. All the evaluated strains biodegraded preferentially the (1R,3R,αS)-gamma-cyhalothrin enantiomer. Therefore, marine-derived fungi enantioselectively biodegraded (±)-LC and can be applied in future studies for bioremediation of contaminated areas. This enantioselective biodegradation indicates that the employment of the most active enantiomer GC as insecticide not only enable the use of a lower amount of pesticide, but also a more easily biodegradable product, reducing the possibility of environmental contamination.


Assuntos
Biodegradação Ambiental , Fungos/metabolismo , Inseticidas/metabolismo , Nitrilas/metabolismo , Piretrinas/metabolismo , Água do Mar/microbiologia , Aspergillus/metabolismo , Benzoatos , Praguicidas/metabolismo
2.
Rev. bras. farmacogn ; 22(2): 257-267, Mar.-Apr. 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-624669

RESUMO

In the present investigation we evaluate methods for the isolation and growth of marine-derived fungal strains in artificial media for the production of secondary metabolites. Inoculation of marine macroorganisms fragments in Petri dishes proved to be the most convenient procedure for the isolation of the largest number of strains. Among the growth media used, 3% malt extract showed the best result for strains isolation and growth, and yielded the largest number of strains from marine macroorganisms. The percentage of strains isolated using each of the growth media which yielded cytotoxic and/or antibiotic extracts was in the range of 23-35%, regardless of the growth media used. Further investigation of extracts obtained from different marine-derived fungal strains yielded several bioactive secondary metabolites, among which (E)-4-methoxy-5-(3-methoxybut-1-enyl)-6-methyl-2H-pyran-2-one is a new metabolite isolated from the Penicillium paxilli strain Ma(G)K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...