Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Transl Med ; 22(1): 43, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200582

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS: Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS: SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS: This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Sulfonas , Animais , Humanos , Camundongos , Angiogênese , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Células Endoteliais , Neoplasias Hepáticas/genética , Metanol , Neovascularização Patológica , Fosfofrutoquinase-2 , Receptores de Esfingosina-1-Fosfato
2.
Geroscience ; 45(6): 3307-3331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37782439

RESUMO

Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/metabolismo , Células Endoteliais , Camundongos Transgênicos , Envelhecimento
3.
Front Immunol ; 14: 1245708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795103

RESUMO

Introduction: Liver cancers exhibit abnormal (leaky) vasculature, hypoxia and an immunosuppressive microenvironment. Normalization of tumor vasculature is an emerging approach to treat many cancers. Blockmir CD5-2 is a novel oligonucleotide-based inhibitor of the miR-27a interaction with VE-Cadherin, the endothelial-specific cadherin. The combination of a vasoactive medication with inhibition of immune checkpoints such as programmed cell death protein 1 (PD1) has been shown to be effective in treating liver cancer in humans. We aimed to study the effect of CD5-2 combined with checkpoint inhibition (using an antibody against PD1) on liver tumor growth, vasculature and immune infiltrate in the diethylnitrosamine (DEN)-induced liver tumor mouse model. Methods: We first analyzed human miR-27a and VE-Cadherin expression data from The Cancer Genome Atlas for hepatocellular carcinoma. CD5-2 and/or anti-PD1 antibody were given to the DEN-treated mice from age 7-months until harvest at age 9-months. Tumor and non-tumor liver tissues were analyzed using histology, immunohistochemistry, immunofluorescence and scanning electron microscopy. Results: Human data showed high miR-27a and low VE-Cadherin were both significantly associated with poorer prognosis. Mice treated with CD5-2 plus anti-PD1 antibody had significantly smaller liver tumors (50% reduction) compared to mice treated with either agent alone, controls, or untreated mice. There was no difference in tumor number. Histologically, tumors in CD5-2-treated mice had less leaky vessels with higher VE-Cadherin expression and less tumor hypoxia compared to non-CD5-2-treated mice. Only tumors in the combination CD5-2 plus anti-PD1 antibody group exhibited a more favorable immune infiltrate (significantly higher CD3+ and CD8+ T cells and lower Ly6G+ neutrophils) compared to tumors from other groups. Discussion: CD5-2 normalized tumor vasculature and reduced hypoxia in DEN-induced liver tumors. CD5-2 plus anti-PD1 antibody reduced liver tumor size possibly by altering the immune infiltrate to a more immunosupportive one.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Humanos , Camundongos , Animais , Lactente , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia , Microambiente Tumoral
4.
Cell Mol Life Sci ; 79(8): 443, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867177

RESUMO

MiR-181 expression levels increased in hepatocellular carcinoma (HCC) compared to non-cancerous tissues. MiR-181 has been widely reported as a possible driver of tumourigenesis but also acts as a tumour suppressor. In addition, the miR-181 family regulates the development and function of immune and vascular cells, which play vital roles in the progression of tumours. More complicatedly, many genes have been identified as miR-181 targets to mediate the effects of miR-181. However, the role of miR-181 in the development of primary tumours remains largely unexplored. We aimed to examine the function of miR-181 and its vital mediators in the progression of diethylnitrosamine-induced primary liver cancers in mice. The size of liver tumours was significantly reduced by 90% in global (GKO) or liver-specific (LKO) 181ab1 knockout mice but not in hematopoietic and endothelial lineage-specific knockout mice, compared to WT mice. In addition, the number of tumours was significantly reduced by 50% in GKO mice. Whole-genome RNA-seq analysis and immunohistochemistry showed that epithelial-mesenchymal transition was partially reversed in GKO tumours compared to WT tumours. The expression of CBX7, a confirmed miR-181 target, was up-regulated in GKO compared to WT tumours. Stable CBX7 expression was achieved with an AAV/Transposase Hybrid-Vector System and up-regulated CBX7 expression inhibited liver tumour progression in WT mice. Hepatic CBX7 deletion restored the progression of LKO liver tumours. MiR-181a expression was the lowest and CBX7 expression the highest in iClust2 and 3 subclasses of human HCC compared to iClust1. Gene expression profiles of GKO tumours overlapped with low-proliferative peri-portal-type HCCs. Liver-specific loss of miR-181ab1 inhibited primary liver tumour progression via up-regulating CBX7 expression, but tumour induction requires both hepatic and non-hepatic miR-181. Also, miR-181ab1-deficient liver tumours may resemble low-proliferative periportal-type human HCC. miR-181 was increased with liver tumour growth. More miR-181, darker colour and higher shape. CBX7 was very low in pericentral hepatocytes, increased in early liver tumours, but reduced in advanced liver tumours. Its levels were maintained in miR-181 KO liver tumours. In tumours (T), brown (darker is more) represents miR-181, the blue circle (thicker is more) represents CBX7.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regulação para Cima/genética
5.
J Transl Med ; 19(1): 393, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530846

RESUMO

BACKGROUND: Sphingosine Kinase (SphK) that catalyzes sphingosine (Sph) to sphingosine 1-phosphate (S1P), plays a key role in both sphingolipid metabolism and cellular signaling. While SphK has been implicated in type 2 diabetes mellitus (T2DM), it is unexplored in humans. Herein, we investigated whether circulating SphK-related metabolites are associated with T2DM incidence in an established prospective cohort. METHODS: Levels of SphK-related sphingolipid metabolites, including Sph, S1P, dihydrosphingosine (dhSph) and dihydro-S1P (dhS1P) in serum were measured by targeted-lipidomic analyses. By accessing to an established prospective cohort that involves a total of 2486 non-diabetic adults at baseline, 100 subjects who developed T2DM after a mean follow-up of 4.2-years, along with 100 control subjects matched strictly with age, sex, BMI and fasting glucose, were randomly enrolled for the present study. RESULTS: Comparison with the control group, medians of serum dhS1P and dhS1P/dhSph ratio at baseline were elevated significantly prior to the onset of T2DM. Each SD increment of dhS1P and dhS1P/dhSph ratio was associated with 53.5% and 54.1% increased risk of incident diabetes, respectively. The predictive effect of circulating dhS1P and dhS1P/dhSph ratio on T2DM incidence was independent of conventional risk factors in multivariate regression models. Furthermore, combination of serum dhS1P and dhS1P/dhSph ratio with conventional clinical indices significantly improved the accuracy of T2DM prediction (AUROC, 0.726), especially for normoglycemic subjects (AUROC, 0.859). CONCLUSION: Circulating levels of dhS1P and dhS1P/dhSph ratio are strongly associated with increased risk of T2DM, and could serve as a useful biomarker for prediction of incident T2DM in normoglycemic populations.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Fosfotransferases (Aceptor do Grupo Álcool) , Estudos Prospectivos , Esfingolipídeos
6.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917287

RESUMO

The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.

7.
Vasc Biol ; 3(1): R35-R47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880430

RESUMO

Cellular senescence is now recognized as one of the hallmarks of aging. Herein, we examine current findings on senescence of the vascular endothelium and its impacts on age-related vascular diseases. Endothelial senescence can result in systemic metabolic changes, implicating senescence in chronic diseases such as diabetes, obesity and atherosclerosis. Senolytics, drugs that eliminate senescent cells, afford new therapeutic strategies for control of these chronic diseases.

8.
Cancer Lett ; 496: 1-15, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991950

RESUMO

Vascular normalisation, the process that reverses the structural and functional abnormalities seen in tumour-associated vessels, is also accompanied by changes in leucocyte trafficking. Our previous studies have shown the normalisation effects of the agent CD5-2 which acts to stabilise VE-Cadherin leading to increased penetration of CD8+ T cells but decreased infiltration of neutrophils (CD11b+Gr1hi) into tumour parenchyma. In the present study, we demonstrate that VE-Cadherin stabilisation through CD5-2 treatment of purified endothelial cells (ECs) results in a similar leucocyte-selective regulation of transmigration, suggesting the existence of an endothelial specific intrinsic mechanism. Further, we show by RNA sequencing (RNA-seq)-based transcriptomic analysis, that treatment of ECs with CD5-2 regulates chemokines known to be involved in leucocyte transmigration, including upregulation of CCL2 and CXCL10 that facilitate CD8+ T cell transmigration. Both in vitro and in vivo mechanistic studies revealed that the increased CCL2 expression was dependent on expression of VE-Cadherin and downstream activation of the AKT/GSK3ß/ß-catenin/TCF4 signalling pathway. CD5-2 treatment also contributed to the reorganisation of the cytoskeleton, inducing reorganisation of stress fibres to circumferential actin, which previously has been described as associated with the stabilisation of the endothelial barrier, and amplification of the transcellular migration of CD8+ T cells. Thus, we propose that promotion of endothelial junctional integrity during vascular normalisation not only inhibits vascular leak but also resets the endothelial dependent regulation of immune cell infiltration.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Caderinas/metabolismo , Endotélio Vascular/patologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/patologia , Oligonucleotídeos/farmacologia , beta Catenina/metabolismo , Animais , Antígenos CD/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/genética , Proliferação de Células , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , beta Catenina/genética
9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-909588

RESUMO

OBJECTIVE Our previous studies demonstrated that various ingredients from the traditional Chinese medicine (TCM) for promoting blood circulation and removing blood stasis, as exemplified by cryptotanshinone and salvi?anolic acid B, exerted striking effects on modulating angiogenesis and vascular permeability, which suggests that they may be effective in treating vascular leak-driven diseases (e.g. tumor, cerebral cavernous malformation and diabetic reti?nopathy). However, the lack of reliable and advanced technologies and models sets up difficult hurdles for better under?standing the role of TCM for promoting blood circulation and removing blood stasis. To this end, this study is to outline numerous cutting-edge platforms that can be utilized for exploring the function of TCM for promoting blood circulation and removing blood stasis in vascular leak-driven diseases. METHODS Two-photon laser scanning fluorescence micros?copy was used to observe the interactions between neutrophils and blood vessels in a real-time manner. Dynamic flow system was employed to mimic the in vivo behaviors of neutrophils. RIP1-Tag5 spontaneous pancreatic cancer model was used to study the function of tumor blood vessels. CCM2ECKO (deletion of CCM2 in endothelial cells) mice were employed to establish the cerebral cavernous malformation (CCM) animal model. Micro-computed tomography (micro-CT) was utilized to assess the CCM lesion. Müller cell-knockout mouse model was used to study the progression of dia?betic retinopathy. Vascular permeability in this model was assessed by fluorescein angiography. RESULTS The interac?tions between neutrophils and endothelial cells involve a series of complicated processes, including rolling, adhesion, intraluminal crawling and transmigration, which were all monitored in vivo by two-photon laser scanning fluorescence microscopy in a real-time manner. Dynamic flow system was capable of recapitulating the biological behaviors of neutro?phils in vitro. Tumor vascular function in particular vascular perfusion could be assessed in the RIP1-Tag5 spontaneous pancreatic cancer model. In terms of CCM studies, specific deletion of CCM2 in endothelial cells resulted in the initiation of CCM lesion. The size and number of CCM lesions could be visualized and quantified by micro-CT. Furthermore, the Müller cell-knockout mouse model was able to precisely reflect the clinical symptoms of diabetic retinopathy. Vascular leak could be monitored at different time points using fluorescein angiography. CONCLUSION An array of high technol?ogies and animal models can be used in investigating the occurrence and progression of multiple vascular leak-driven diseases. The pre-clinical and clinical studies of TCM for promoting blood circulation and removing blood stasis provide fundamental support for the application of the above-mentioned platforms, with the purpose of uncovering the scientific basis of TCM for promoting blood circulation and removing blood stasis.

10.
Proc Natl Acad Sci U S A ; 117(39): 24434-24442, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32917816

RESUMO

Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Homeostase , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Esfingolipídeos/metabolismo
11.
PLoS Biol ; 18(6): e3000734, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502201

RESUMO

Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , MicroRNAs/metabolismo , Animais , Regulação para Baixo/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Rombencéfalo/irrigação sanguínea , Rombencéfalo/patologia , Regulação para Cima/genética , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Cell Commun Signal ; 18(1): 18, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013974

RESUMO

BACKGROUND: Vascular endothelial cell alignment in the direction of flow is an adaptive response that protects against aortic diseases such as atherosclerosis. The RhoGTPases are known to regulate this alignment. We have shown previously that ARHGAP18 in endothelial cells is a negative regulator of RhoC and its expression is essential in flow-mediated alignment. Depletion of ARHGAP18 inhibits alignment and results in the induction of a pro-inflammatory phenotype. In embryogenesis, ARHGAP18 was identified as a downstream effector of the Yes-associated protein, YAP, which regulates cell shape and size. METHODS: We have used siRNA technology to deplete either ARHGAP18 or YAP in human endothelial cells. The in vitro studies were performed under athero-protective, laminar flow conditions. The analysis of YAP activity was also investigated, using high performance confocal imaging, in our ARHGAP18 knockout mutant mice. RESULTS: We show here that loss of ARHGAP18, although decreasing the expression of YAP results in its nuclear localisation consistent with activation. We further show that depletion of YAP itself results in its activation as defined by an in increase in its nuclear localisation and an increase in the YAP target gene, CyR61. Depletion of YAP, similar to that observed for ARHGAP18 depletion, results in loss of endothelial cell alignment under high shear stress mediated flow and also in the activation of NFkB, as determined by p65 nuclear localisation. In contrast, ARHGAP18 overexpression results in upregulation of YAP, its phosphorylation, and a decrease in the YAP target gene Cyr61, consistent with YAP inactivation. Finally, in ARHGAP18 deleted mice, in regions where there is a loss of endothelial cell alignment, a situation associated with a priming of the cells to a pro-inflammatory phenotype, YAP shows nuclear localisation. CONCLUSION: Our results show that YAP is downstream of ARHGAP18 in mature endothelial cells and that this pathway is involved in the athero-protective alignment of endothelial cells under laminar shear stress. ARHGAP18 depletion leads to a disruption of the junctions as seen by loss of VE-Cadherin localisation to these regions and a concomitant localisation of YAP to the nucleus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Reologia , Fatores de Transcrição/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Animais , Aorta/metabolismo , Proteínas Ativadoras de GTPase/deficiência , Deleção de Genes , Humanos , Masculino , Camundongos Knockout , Proteínas de Sinalização YAP
13.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165519, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369819

RESUMO

Cerebral cavernous malformations (CCMs) are vascular malformations that cause hemorrhagic stroke. CCMs can arise from loss-of-function mutations in any one of CCM1 (KRIT1), CCM2 or CCM3 (PDCD10). Despite the mutation being in all endothelial cells the CCM lesions develop primarily in the regions with low fluid shear stress (FSS). Here we investigated the role of FSS in the signalling pathways associated with loss of function of CCM genes. We performed transcriptomic analysis on CCM1 or CCM2-silenced endothelial cells subjected to various FSS. The results showed 1382 genes were deregulated under low FSS, whereas only 29 genes were deregulated under high FSS. Key CCM downstream signalling pathways, including increased KLF2/4 expression, actin cytoskeleton reorganization, TGF-ß and toll-like receptor signalling pathways and also oxidative stress pathways, were all highly upregulated but only under low FSS. We also show that the key known phenotypes of CCM lesions such as disrupted endothelial cell junction, increased inflammatory response/oxidative stress and elevated RhoA-ROCK activity, are only exhibited in monolayers of CCM-silenced endothelial cells subjected to low FSS. Our data establishes that shear stress acts as a previously unappreciated but important regulator for CCM gene function and may determine the site of CCM lesion development.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Células Endoteliais/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Transdução de Sinais , Animais , Velocidade do Fluxo Sanguíneo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Retina/metabolismo , Retina/patologia , Transcriptoma , Regulação para Cima
14.
J Am Heart Assoc ; 8(2): e010057, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30630384

RESUMO

Background Vascular endothelial cell (EC) alignment in the direction of flow is an adaptive response that protects against aortic diseases, such as atherosclerosis. The Rho GTP ases are known to regulate this alignment. Herein, we analyze the effect of ARHGAP 18 on the regulation of EC alignment and examine the effect of ARHGAP 18 deficiency on the development of atherosclerosis in mice. Methods and Results We used in vitro analysis of ECs under flow conditions together with apolipoprotein E-/- Arhgap 18-/- double-mutant mice to study the function of ARHGAP 18 in a high-fat diet-induced model of atherosclerosis. Depletion of ARHGAP 18 inhibited the alignment of ECs in the direction of flow and promoted inflammatory phenotype, as evidenced by disrupted junctions and increased expression of nuclear factor-κB and intercellular adhesion molecule-1 and decreased endothelial nitric oxide synthase. Mice with double deletion in ARHGAP 18 and apolipoprotein E and fed a high-fat diet show early onset of atherosclerosis, with lesions developing in atheroprotective regions. Conclusions ARHGAP 18 is a protective gene that maintains EC alignments in the direction of flow. Deletion of ARHGAP 18 led to loss of EC ability to align and promoted atherosclerosis development.


Assuntos
Doenças da Aorta/genética , Velocidade do Fluxo Sanguíneo/fisiologia , Endotélio Vascular/metabolismo , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Placa Aterosclerótica/genética , Animais , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Western Blotting , Modelos Animais de Doenças , Endotélio Vascular/patologia , Proteínas Ativadoras de GTPase/biossíntese , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA/genética , Transdução de Sinais
15.
Diabetologia ; 62(2): 322-334, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30443753

RESUMO

AIMS/HYPOTHESIS: A major feature of diabetic retinopathy is breakdown of the blood-retinal barrier, resulting in macular oedema. We have developed a novel oligonucleotide-based drug, CD5-2, that specifically increases expression of the key junctional protein involved in barrier integrity in endothelial cells, vascular-endothelial-specific cadherin (VE-cadherin). CD5-2 prevents the mRNA silencing by the pro-angiogenic microRNA, miR-27a. CD5-2 was evaluated in animal models of ocular neovascularisation and vascular leak to determine its potential efficacy for diabetic retinopathy. METHODS: CD5-2 was tested in three mouse models of retinal dysfunction: conditional Müller cell depletion, streptozotocin-induced diabetes and oxygen-induced retinopathy. Vascular permeability in the Müller cell-knockout model was assessed by fluorescein angiography. The Evans Blue leakage method was used to determine vascular permeability in streptozotocin- and oxygen-induced retinopathy models. The effects of CD5-2 on retinal neovascularisation, inter-endothelial junctions and pericyte coverage in streptozotocin- and oxygen-induced retinopathy models were determined by staining for isolectin-B4, VE-cadherin and neural/glial antigen 2 (NG2). Blockmir CD5-2 localisation in diseased retina was determined using fluorescent in situ hybridisation. The effects of CD5-2 on VE-cadherin expression and in diabetic retinopathy-associated pathways, such as the transforming growth factor beta (TGF-ß) and wingless/integrated (WNT) pathway, were confirmed using western blot of lysates from HUVECs, a mouse brain endothelial cell line and a VE-cadherin null mouse endothelial cell line. RESULTS: CD5-2 penetrated the vasculature of the eye in the oxygen-induced retinopathy model. Treatment of diseased mice with CD5-2 resulted in reduced vascular leak in all three animal models, enhanced expression of VE-cadherin in the microvessels of the eye and improved pericyte coverage of the retinal vasculature in streptozotocin-induced diabetic models and oxygen-induced retinopathy models. Further, CD5-2 reduced the activation of retinal microglial cells in the streptozotocin-induced diabetic model. The positive effects of CD5-2 seen in vivo were further confirmed in vitro by increased protein expression of VE-cadherin, SMAD2/3 activity, and platelet-derived growth factor B (PDGF-B). CONCLUSIONS/INTERPRETATION: CD5-2 has therapeutic potential for individuals with vascular-leak-associated retinal diseases based on its ease of delivery and its ability to reverse vascular dysfunction and inflammatory aspects in three animal models of retinopathy.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Animais , Barreira Hematorretiniana/metabolismo , Permeabilidade Capilar , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Camundongos , Retina/metabolismo , Vasos Retinianos/metabolismo
16.
Oncotarget ; 9(21): 15635-15649, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643998

RESUMO

Primary liver cancer is the 3rd leading cause of cancer deaths worldwide with very few effective treatments. Sphingosine kinase 1 (SphK1), a key regulator of sphingolipid metabolites, is over-expressed in human hepatocellular carcinoma (HCC) and our previous studies have shown that SphK1 is important in liver injury. We aimed to explore the role of SphK1 specifically in liver tumorigenesis using the SphK1 knockout (SphK1-/-) mouse. SphK1 deletion significantly reduced the number and the size of DEN-induced liver cancers in mice. Mechanistically, fewer proliferating but more apoptotic and senescent cells were detected in SphK1 deficient tumors compared to WT tumors. There was an increase in sphingosine rather than a decrease in sphingosine 1-phosphate (S1P) in SphK1 deficient tumors. Furthermore, the STAT3-S1PR pathway that has been reported previously to mediate the effect of SphK1 on colorectal cancers was not altered by SphK1 deletion in liver cancer. Instead, c-Myc protein expression was down-regulated by SphK1 deletion. In conclusion, this is the first in vivo evidence that SphK1 contributes to hepatocarcinogenesis. However, the downstream signaling pathways impacting on the development of HCC via SphK1 are organ specific providing further evidence that simply transferring known oncogenic molecular pathway targeting into HCC is not always valid.

17.
Circ Res ; 121(5): 512-524, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28701309

RESUMO

RATIONALE: Thoracic aortic aneurysm (TAA) is a potentially lethal condition, which can affect individuals of all ages. TAA may be complicated by the sudden onset of life-threatening dissection or rupture. The underlying mechanisms leading to TAA formation, particularly in the nonsyndromal idiopathic group of patients, are not well understood. Thus, identification of new genes and targets that are involved in TAA pathogenesis are required to help prevent and reverse the disease phenotype. OBJECTIVE: Here we explore the role of ARHGAP18, a novel Rho GAP expressed by smooth muscle cells (SMCs), in the pathogenesis of TAA. METHODS AND RESULTS: Using human and mouse aortic samples, we report that ARHGAP18 levels were significantly reduced in the SMC layer of aortic aneurysms. Arhgap18 global knockout (Arhgap18-/-) mice exhibited a highly synthetic, proteolytic, and proinflammatory smooth muscle phenotype under basal conditions and when challenged with angiotensin II, developed TAA with increased frequency and severity compared with littermate controls. Chromatin immunoprecipitation studies revealed this phenotype is partly associated with strong enrichment of H3K4me3 and depletion of H3K27me3 at the MMP2 and TNF-α promoters in Arhgap18-deficient SMC. We further show that TAA formation in the Arhgap18-/- mice is associated with loss of Akt activation. The abnormal SMC phenotype observed in the Arhgap18-/- mice can be partially rescued by pharmacological treatment with the mTORC1 inhibitor rapamycin, which reduces the synthetic and proinflammatory phenotype of Arhgap18-deficient SMC. CONCLUSION: We have identified ARHGAP18 as a novel protective gene against TAA formation and define an additional target for the future development of treatments to limit TAA pathogenesis.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/prevenção & controle , Proteínas Ativadoras de GTPase/deficiência , Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aneurisma da Aorta Torácica/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
18.
Cancer Res ; 77(16): 4434-4447, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28655790

RESUMO

T-cell infiltration of solid tumors is associated with improved prognosis and favorable responses to immunotherapy. Mechanisms that enable tumor infiltration of CD8+ T cells have not been defined, nor have drugs that assist this process been discovered. Here we address these issues with a focus on VE-cadherin, a major endothelial cell-specific junctional protein that controls vascular integrity. A decrease in VE-cadherin expression is associated with tumor pathology. We developed an oligonucleotide-based inhibitor (CD5-2), which disrupted the interaction of VE-cadherin with its regulator miR-27a, resulting in increased VE-cadherin expression. Administration of CD5-2 in tumor-bearing mice enhanced expression of VE-cadherin in tumor endothelium, activating TIE-2 and tight junction pathways and normalizing vessel structure and function. CD5-2 administration also enhanced tumor-specific T-cell infiltration and spatially redistributed CD8+ T cells within the tumor parenchyma. Finally, CD5-2 treatment enhanced the efficacy of anti-PD-1 blocking antibody. Our work establishes a role for VE-cadherin in T-cell infiltration in tumors and offers a preclinical proof of concept for CD5-2 as a therapeutic modifier of cancer immunotherapy via effects on the tumor vasculature. Cancer Res; 77(16); 4434-47. ©2017 AACR.


Assuntos
Caderinas/imunologia , Neoplasias do Colo/terapia , Endotélio Vascular/imunologia , Imunoterapia/métodos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/terapia , Linfócitos T/imunologia , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/imunologia , Camundongos , Terapia de Alvo Molecular
19.
Mol Biol Cell ; 28(8): 1066-1078, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28251925

RESUMO

RhoGTPases are important regulators of the cell cytoskeleton, controlling cell shape, migration and proliferation. Previously we showed that ARHGAP18 in endothelial cells is important in cell junctions. Here we show, using structured illumination microscopy (SIM), ground-state depletion (GSD), and total internal reflection fluorescence microscopy (TIRF) that a proportion of ARHGAP18 localizes to microtubules in endothelial cells, as well as in nonendothelial cells, an association confirmed biochemically. In endothelial cells, some ARHGAP18 puncta also colocalized to Weibel-Palade bodies on the microtubules. Depletion of ARHGAP18 by small interfering RNA or analysis of endothelial cells isolated from ARHGAP18-knockout mice showed microtubule destabilization, as evidenced by altered morphology and decreased acetylated α-tubulin and glu-tubulin. The destabilization was rescued by inhibition of ROCK and histone deacetylase 6 but not by a GAP-mutant form of ARHGAP18. Depletion of ARHGAP18 resulted in a failure to secrete endothelin-1 and a reduction in neutrophil transmigration, both known to be microtubule dependent. Thrombin, a critical regulator of the Rho-mediated barrier function of endothelial cells through microtubule destabilization, enhanced the plasma membrane-bound fraction of ARHGAP18. Thus, in endothelial cells, ARHGAP18 may act as a significant regulator of vascular homeostasis.


Assuntos
Células Endoteliais/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Microtúbulos/fisiologia , Acetilação , Actinas/metabolismo , Animais , Movimento Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Junções Intercelulares/metabolismo , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Quinases Associadas a rho/metabolismo
20.
Mol Ther Nucleic Acids ; 5(8): e354, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27741223

RESUMO

The regulation of function of endothelial cell-cell junctions is fundamental in sustaining vascular integrity. The polycistronic microRNA (miR) complexes containing miR-23a-27a-24-2, and 23b-27b-24-1 are predicted to target the majority of major endothelial junctional proteins. We focus on miR-23a and miR-23b, and investigate the functional effects of these miRs on junctions. While miR-23a and 23b only differ by 1 nucleotide (g19) outside the seed region and thus are predicted to have the same targets, they function differently with miR-23a inhibiting permeability and miR-23b inhibiting angiogenesis. Both miRs target the junctional attractive molecule (tight junction protein 2) ZO-2 and the repulsive molecule junctional adhesion molecule C (JAM-C), although the inhibition of JAM-C by miR-23a is more profound than by miR-23b. The difference in potency is attributable to differences at g19 since a mutation of the t17, the g19 binding site of miR-23b in the 3'UTR of JAM-C restores identity. We also show that the pattern of expression of miR-23a and miR-23b and their targets are different. Thus, the paralogues miR-23a and miR-23b can have profoundly different effects on endothelial cell function due at least partially to selective effects on target proteins and differences in expression patterns of the miRs. This work exposes a hitherto unappreciated complexity in therapeutically targeting miRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...