Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169045, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061658

RESUMO

Serpentinization is a well-known aqueous alteration process that may have played important roles in the origins and early evolution of life on Earth, and perhaps Mars, but there are still aspects related to biomarker distribution, partitioning, and preservation that merit further study. To assess the role that precipitation of carbonate phases in serpentinization settings may have on biomarker preservation, we search for life signs in one of the world's largest outcrops of subcontinental peridotites (Ronda, South Spain). We investigate the organic record of groundwater and associated carbonate deposits (travertines) in seven hyperalkaline springs, and reconstruct the biological activity and metabolic interactions of the serpentinization-hosted ecosystem. We identified lipid biomarkers and isotopic evidences of life, whose concentration and variety were much lower in groundwater than travertine deposits (ppb/ppt versus ppm level). Groundwater carried organics of abiotic (n-alkanes with values of CPI âˆ¼ 1) and/or biotic origin, of fresher (e.g. acids or alcohols) or more diagenetized (mature hopanes and n-alkanes) nature. In contrast, associated travertines held a more prolific record of biomarkers incorporating (molecular and isotopic) fingerprints of surface (mostly phototrophs) and subsurface (chemolithotrophs, methanogens and/or methanotrophs) life. Serpentinization-associated travertines seem to act as biomolecule archives over time fed by autochthonous and allochthonous sources, hence amplifying the dim biological signal of groundwater. These results illustrate the relevance of serpentinization-associated surface mineral deposits in searching for traces of life on analogous environments on Mars. We highlight the diversity of lipids produced in serpentinizing land environments and emphasize the potential of these geostable biomolecules to preserve fingerprints of life.


Assuntos
Carbonatos , Ecossistema , Biomarcadores , Alcanos , Lipídeos
2.
Sci Total Environ ; 544: 874-82, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706760

RESUMO

A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 µg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater.


Assuntos
Arsênio/análise , Carbono/análise , Monitoramento Ambiental , Microalgas/metabolismo , Poluentes Químicos da Água/análise , Arsênio/metabolismo , Água Doce , Água Subterrânea/química , Parques Recreativos , Espanha
3.
Sci Total Environ ; 357(1-3): 54-73, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16157364

RESUMO

The European COST action 620 proposed a comprehensive approach to karst groundwater protection, comprising methods of intrinsic and specific vulnerability mapping, validation of vulnerability maps, hazard and risk mapping. This paper presents the first application of all components of this Pan-European Approach to the Sierra de Líbar, a karst hydrogeology system in Andalusia, Spain. The intrinsic vulnerability maps take into account the hydrogeological characteristics of the area but are independent from specific contaminant properties. Two specific vulnerability maps were prepared for faecal coliforms and BTEX. These maps take into account the specific properties of these two groups of contaminants and their interaction with the karst hydrogeological system. The vulnerability assessment was validated by means of tracing tests, hydrological, hydrochemical and isotope methods. The hazard map shows the localization of potential contamination sources resulting from human activities, and evaluates those according to their dangerousness. The risk of groundwater contamination depends on the hazards and the vulnerability of the aquifer system. The risk map for the Sierra de Líbar was thus created by overlaying the hazard and vulnerability maps.


Assuntos
Conservação dos Recursos Naturais , Abastecimento de Água , Enterobacteriaceae , Fezes/microbiologia , Fenômenos Geológicos , Geologia , Hidrocarbonetos Aromáticos , Medição de Risco , Espanha , Poluentes da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...