Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793406

RESUMO

Tin oxide (SnO2) has been recognized as one of the beneficial components in the electron transport layer (ETL) of lead-halide perovskite solar cells (PSCs) due to its high electron mobility. The SnO2-based thin film serves for electron extraction and transport in the device, induced by light absorption at the perovskite layer. The focus of this paper is on the heat treatment of a nanoaggregate layer of single-nanometer-scale SnO2 particles in combination with another metal-dopant precursor to develop a new process for ETL in PSCs. The combined precursor solution of Li chloride and titanium(IV) isopropoxide (TTIP) was deposited onto the SnO2 layer. We varied the heat treatment conditions of the spin-coated films comprising double layers, i.e., an Li/TTIP precursor layer and SnO2 nanoparticle layer, to understand the effects of nanoparticle interconnection via sintering and the mixing ratio of the Li-dopant on the photovoltaic performance. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) measurements of the sintered nanoparticles suggested that an Li-doped solid solution of SnO2 with a small amount of TiO2 nanoparticles formed via heating. Interestingly, the bandgap of the Li-doped ETL samples was estimated to be 3.45 eV, indicating a narrower bandgap as compared to that of pure SnO2. This observation also supported the formation of an SnO2/TiO2 solid solution in the ETL. The utilization of such a nanoparticulate SnO2 film in combination with an Li/TTIP precursor could offer a new approach as an alternative to conventional SnO2 electron transport layers for optimizing the performance of lead-halide perovskite solar cells.

2.
Materials (Basel) ; 17(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473539

RESUMO

Microscale electronics have become increasingly more powerful, requiring more efficient cooling systems to manage the higher thermal loads. To meet this need, current research has been focused on overcoming the inefficiencies present in typical thermal management systems due to low Reynolds numbers within microchannels and poor physical properties of the working fluids. For the first time, this research investigated the effects of a connector with helical geometry on the heat transfer coefficient at low Reynolds numbers. The introduction of a helical connector at the inlet of a microchannel has been experimentally tested and results have shown that this approach to flow augmentation has a great potential to increase the heat transfer capabilities of the working fluid, even at low Reynolds numbers. In general, a helical connector can act as a stabilizer or a mixer, based on the characteristics of the connector for the given conditions. When the helical connector acts as a mixer, secondary flows develop that increase the random motion of molecules and possible nanoparticles, leading to an enhancement in the heat transfer coefficient in the microchannel. Otherwise, the heat transfer coefficient decreases. It is widely known that introducing nanoparticles into the working fluids has the potential to increase the thermal conductivity of the base fluid, positively impacting the heat transfer coefficient; however, viscosity also tends to increase, reducing the random motion of molecules and ultimately reducing the heat transfer capabilities of the working fluid. Therefore, optimizing the effects of nanoparticles characteristics while reducing viscous effects is essential. In this study, deionized water and deionized water-diamond nanofluid at 0.1 wt% were tested in a two-microchannel system fitted with a helical connector in between. It was found that the helical connector can make a great heat transfer coefficient enhancement in low Reynolds numbers when characteristics of geometry are optimized for given conditions.

3.
Materials (Basel) ; 16(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138791

RESUMO

Tin oxide (SnO2) is a technologically important semiconductor with versatile applications. In particular, attention is being paid to nanostructured SnO2 materials for use as a part of the constituents in perovskite solar cells (PSCs), an emerging renewable energy technology. This is mainly because SnO2 has high electron mobility, making it favorable for use in the electron transport layer (ETL) in these devices, in which SnO2 thin films play a role in extracting electrons from the adjacent light-absorber, i.e., lead halide perovskite compounds. Investigation of SnO2 solution synthesis under diverse reaction conditions is crucial in order to lay the foundation for the cost-effective production of PSCs. This research focuses on the facile catalyst-free synthesis of single-nanometer-scale SnO2 nanocrystals employing an aromatic organic ligand (as the structure-directing agent) and Sn(IV) salt in an aqueous solution. Most notably, the use of an aromatic amino acid ester hydrochloride salt-i.e., phenylalanine methyl ester hydrochloride (denoted as L hereafter)-allowed us to obtain an aqueous precursor solution containing a higher concentration of ligand L, in addition to facilitating the growth of SnO2 nanoparticles as small as 3 nm with a narrow size distribution, which were analyzed by means of high-resolution transmission electron microscopy (HR-TEM). Moreover, the nanoparticles were proved to be crystallized and uniformly dispersed in the reaction mixture. The environmentally benign, ethanol-based SnO2 nanofluids stabilized with the capping agent L for the Sn(IV) ions were also successfully obtained and spin-coated to produce a SnO2 nanoparticle film to serve as an ETL for PSCs. Several SnO2 ETLs that were created by varying the temperature of nanoparticle synthesis were examined to gain insight into the performance of PSCs. It is thought that reaction conditions that utilize high concentrations of ligand L to control the growth and dispersion of SnO2 nanoparticles could serve as useful criteria for designing SnO2 ETLs, since hydrochloride salt L can offer significant potential as a functional compound by controlling the microstructures of individual SnO2 nanoparticles and the self-assembly process to form nanostructured SnO2 thin films.

4.
Materials (Basel) ; 16(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444853

RESUMO

We demonstrate for the first time the structure identification and narrow-bandgap property of 1D hybridized SnO/SnO2 nanoparticles derived from the calcination of a single-source precursor, i.e., tin(II) oxalate. Systematic Raman analysis together with high-resolution TEM (HR-TEM) measurements of the tin oxide samples were carried out by changing the calcination temperatures. These data revealed the simultaneous formation of 1D SnO/SnO2 in the rod particles that grew in air. It was also found that Sn(II) can be introduced by changing the concentration of Sn(II) salt in the precursor synthesis and the maximum temperature in calcination. Particles measuring 20~30 nm were sintered to produce tin oxide nanorods including tin monoxide, SnO. Photoabsorption properties associated with the formation of the SnO/SnO2 nanocomposites were also investigated. Tauc plots indicate that the obtained tin oxide samples had a lower bandgap of 2.9~3.0 eV originating from SnO in addition to a higher bandgap of around 3.5~3.7 eV commonly observed for SnO2. Such 1D SnOx/SnO2 hybrids via tin oxalate synthesis with this optical property would benefit new materials design for photoenergy conversion systems, such as photocatalysts.

5.
Materials (Basel) ; 16(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37109972

RESUMO

Tin oxide (SnO2) and titanium dioxide (TiO2) are recognized as attractive energy materials applicable for lead halide perovskite solar cells (PSCs). Sintering is one of the effective strategies for improving the carrier transport of semiconductor nanomaterials. Using the alternative metal-oxide-based ETL, nanoparticles are often used in a way that they are dispersed in a precursor liquid prior to their thin-film deposition. Currently, the creation of PSCs using nanostructured Sn/Ti oxide thin-film ETL is one of the topical issues for the development of high-efficiency PSCs. Here, we demonstrate the preparation of terpineol/PEG-based fluid containing both tin and titanium compounds that can be utilized for the formation of a hybrid Sn/Ti oxide ETL on a conductive substrate (F-doped SnO2 glass substrate: FTO). We also pay attention to the structural analysis of the Sn/Ti metal oxide formation at the nanoscale using a high-resolution transmission electron microscope (HR-TEM). The variation of the nanofluid composition, i.e., the concentration of tin and titanium sources, was examined to obtain a uniform transparent thin film by spin-coating and sintering processes. The maximum power conversion efficiency was obtained for the concentration condition of [SnCl2·2H2O]/[titanium tetraisopropoxide (TTIP)] = 25:75 in the terpineol/PEG-based precursor solution. Our method for preparing the ETL nanomaterials provides useful guidance for the creation of high-performance PSCs using the sintering method.

6.
Nanomaterials (Basel) ; 12(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296816

RESUMO

The focus of this paper is to investigate the effects of the addition of a connector between two serial microchannels. The idea of adding connector at the inlet of microchannels to enhance the random motion of molecules or nanoparticles in low Reynolds numbers was developed in our research group for the first time. It was experimentally determined that the shape of a connector between two microchannels has a significant impact on the enhancement of the random motion of molecules or nanoparticles. Consequently, the heat transfer coefficient is improved inside the second microchannel. The connector is large enough to refresh the memory of the fluid before entering the second channel, causing a higher maximum heat transfer coefficient in the second channel. It was also observed that the heat transfer coefficient can be increased at the end of the channel when the outlet temperature is relatively high. This may be explained by the fact that as temperature increases, the fluid viscosity tends to decrease, which generally drives an increase in the local random motion of base fluid molecules and nanoparticles. This causes an increase in the microchannel heat transfer coefficient. It was found that the addition of nanoparticles significantly modified the impact of the connector on the microchannel heat transfer coefficient. In addition, the effects of changing the Reynolds number and the shape of the connector were investigated through use of computational fluid dynamics (CFD) calculations. It was found that both factors have an important impact on the variation of velocity and enhancement of random motion of molecules and consequently significantly affect the heat transfer coefficient.

7.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014712

RESUMO

The focus of this paper was to develop a comprehensive nanofluid thermal conductivity model that can be applied to nanofluids with any number of distinct nanoparticles for a given base fluid, concentration, temperature, particle material, and particle diameter. For the first time, this model permits a direct analytical comparison between nanofluids with a different number of distinct nanoparticles. It was observed that the model's average error was ~5.289% when compared with independent experimental data for hybrid nanofluids, which is lower than the average error of the best preexisting hybrid nanofluid model. Additionally, the effects of the operating temperature and nanoparticle concentration on the thermal conductivity and viscosity of nanofluids were investigated theoretically and experimentally. It was found that optimization of the operating conditions and characteristics of nanofluids is crucial to maximize the heat transfer coefficient in nanofluidics and microfluidics. Furthermore, the existing theoretical models to predict nanofluid thermal conductivity were discussed based on the main mechanisms of energy transfer, including Effective Medium Theory, Brownian motion, the nanolayer, aggregation, Molecular Dynamics simulations, and enhancement in hybrid nanofluids. The advantage and disadvantage of each model, as well as the level of accuracy of each model, were examined using independent experimental data.

8.
Nanomaterials (Basel) ; 12(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407284

RESUMO

For the first time, nanofluid boiling was applied as a process for the creation of a semiconductor TiO2 nanoparticle film that can be deposited onto a conductive substrate (F-doped SnO2 glass: FTO). A steel-base device designed for pool boiling was used to deposit a TiO2-based nanofluid consisting of nanoparticles with an average size of about 20 nm. The boiling of the nanofluid directly on the FTO glass substrate allowed for the deposition of the nanoparticles onto the FTO surface. In principle, the surface responsible for transferring heat to the fluid can be covered with these nanoparticles when the nanofluid boils. Using the as-deposited films, crystal growth of the TiO2 nanoparticle was controlled by varying the strategies of the post-sintering profile. The maximum temperatures, periods, and ramping rates for the obtained samples were systematically changed. Scanning electron microscopy (SEM) revealed that a densely packed TiO2-nanoparticle layer was obtained for the as-deposited substrate via pool boiling. For the maximum temperature at 550 °C, the TiO2 grain sizes became larger (~50 nm) and more round-shaped TiO2 nanostructures were identified. Notably, we have demonstrated for the first time how the sintering of TiO2 nanoparticles proceeds for the nanoporous TiO2 films using high-resolution transmission electron microscopy (TEM) measurements. We found that the TiO2 nanoparticles fused with each other and crystal growth occurred through neighboring 2-4 nanoparticles for the 550 °C sample, which was proved by the TEM analysis that continuous lattice fringes corresponding to the (101) anatase phase were clearly observed through the entire area of some nanoparticles aligned horizontally. In addition, the loss of the TiO2 nanofluid (precursor solution) was completely avoided in our TiO2 deposition. Unlike the commonly used spin-coating method, nanofluid pool boiling would provide an alternative cost-effective approach to manufacture semiconductor layers for various applications, such as solar cells.

9.
Nanomaterials (Basel) ; 12(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214944

RESUMO

The purpose of this paper is to investigate the effects of a connector between two microchannels, for the first time. A brief literature review is provided to offer a better understanding on the impacts of concentration and the characteristics of nanoparticles on thermal conductivity, viscosity, and, consequently, the heat transfer coefficient inside the microchannels. The given literature review aims to help engineer nanofluids to enhance the heat transfer coefficient inside the microchannels. In this research, Fe3O4 nanoparticles were introduced into the base liquid to enhance the heat transfer coefficient inside the microchannels and to provide a better understanding of the impact of the connector between two microchannels. It was observed that the connector has a significant impact on enhancing the heat transfer coefficient inside the second microchannel, by increasing the level of randomness of molecules and particles prior to entering the second channel. The connector would act to refresh the memory of the fluid before entering the second channel, and as a result, the heat transfer coefficient in the second channel would start at a maximum value. Therefore, the overall heat transfer coefficient in both microchannels would increase for given conditions. The impacts of the Reynolds number and introducing nanoparticles in the base liquid on effects induced by the connector were investigated, suggesting that both factors play a significant role on the connector's impact on the heat transfer coefficient.

10.
Nanomaterials (Basel) ; 11(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361129

RESUMO

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.

11.
Materials (Basel) ; 14(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199511

RESUMO

As electronic devices become smaller and more powerful, the demand for micro-scale thermal management becomes necessary in achieving a more compact design. One way to do that is enhancing the forced convection heat transfer by adding nanoparticles into the base liquid. In this study, the nanofluid forced convection heat transfer coefficient was measured inside stainless-steel microchannels (ID = 210 µm) and heat transfer coefficient as a function of distance was measured to explore the effects of base liquid, crystal phase, nanoparticle material, and size on heat transfer coefficient. It was found that crystal phase, characteristics of nanoparticles, the thermal conductivity and viscosity of nanofluid can play a significant role on heat transfer coefficient. In addition, the effects of man-made and commercial TiO2 on heat transfer coefficient were investigated and it was found that man-made anatase TiO2 nanoparticles were more effective to enhance the heat transfer coefficient, for given conditions. This study also conducted a brief literature review on nanofluid forced convection heat transfer to investigate how nanofluid heat transfer coefficient as a function of distance would be affected by effective parameters such as base liquid, flow regime, concentration, and the characteristics of nanoparticles (material and size).

12.
Materials (Basel) ; 14(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800374

RESUMO

This review was focused on expressing the effects of base liquid, temperature, possible surfactant, concentration and characteristics of nanoparticles including size, shape and material on thermal conductivity and viscosity of nanofluids. An increase in nanoparticle concentration can lead to an increase in thermal conductivity and viscosity and an increase in nanoparticle size, can increase or decrease thermal conductivity, while an increase in nanoparticle size decreases the viscosity of the nanofluid. The addition of surfactants at low concentrations can increase thermal conductivity, but at high concentrations, surfactants help to reduce thermal conductivity of the nanofluid. The addition of surfactants can decrease the nanofluid viscosity. Increasing the temperature, increased the thermal conductivity of a nanofluid, while decreasing its viscosity. Additionally, the effects of material of nanoparticles on the thermal conductivity and viscosity of a nanofluid need further investigations. In the case of hybrid nanofluids, it was observed that nanofluids with two different particles have the same trend of behavior as nanofluids with single particles in the regard to changes in temperature and concentration. Additionally, the level of accuracy of existing theoretical models for thermal conductivity and viscosity of nanofluids was examined.

13.
Nanomaterials (Basel) ; 10(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102351

RESUMO

Movement of nanoparticle was investigated at the vicinity of silver nanofluid by using a microscope equipped with 100X lens. It was observed that silver nanoparticles were constantly moving inside the nanofluid for the first time. To explore the silver nanoparticle movement, the silver nanofluid was mixed with fluorescent nanoparticles. The coated nanoparticles were tracked three-dimensionally using a Delta Vision Elite inverted optical microscope. It was found that Marangoni flow was a possible reason of the nanoparticle movement which was generated by a gradient of the surface tension at the vicinity of the triple line. A gradient of the surface tension was formed by the segregation of the surfactant from the base liquid at the vicinity of the triple line. The surfactant was separated from the base liquid inside the triple region, since they have different affinities for the substrate. It was also shown that ring phenomenon took place when nanoparticle movement was weak or negligible.

14.
Adv Colloid Interface Sci ; 225: 1-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26320606

RESUMO

Bubbles are fundamental to our daily life and have wide applications such as in the chemical and petrochemical industry, pharmaceutical engineering, mineral processing and colloids engineering. This paper reviews the existing theoretical and experimental bubble studies, with a special focus on the dynamics of triple line and the influence of nanoparticles on the bubble growth and departure process. Nanoparticles are found to influence significantly the effective interfacial properties and the dynamics of triple line, whose effects are dependent on the particle morphology and their interaction with the substrate. While the Young-Laplace equation is widely applied to predict the bubble shape, its application is limited under highly non-equilibrium conditions. Using gold nanoparticle as an example, new experimental study is conducted to reveal the particle concentration influence on the behaviour of triple line and bubble dynamics. A new method is developed to predict the bubble shape when the interfacial equilibrium conditions cannot be met, such as during the oscillation period. The method is used to calculate the pressure difference between the gas and liquid phases, which is shown to oscillate across the liquid-gas interface and is responsible for the interface fluctuation. The comparison of the theoretical study with the experimental data shows a very good agreement, which suggests its potential application to predict bubble shape during non-equilibrium conditions.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
15.
J Colloid Interface Sci ; 362(2): 285-91, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21802094

RESUMO

This work investigates the feasibility of engineering surface wettability by using different nanoparticles. As an illustration, detailed formation of gas bubbles on top of a stainless steel substrate plate in a quiescent pool of aqueous gold and alumina nanofluids is studied. The presence of nanoparticles is shown to be able to modify the dynamics of triple line and bubble growth significantly. An early pinning of the bubble triple line is observed and a larger bubble contact angle is found for bubbles growing in a gold nanofluid, whereas an opposite phenomenon is observed for bubbles growing in an alumina nanofluid compared to those of pure water. Other bubble parameters such as departure volume, bubble frequency, and waiting time of bubble formation are also affected by the presence of nanoparticles. The variation of solid surface tensions due to the existence of nanoparticles and the resultant force at the triple line should be responsible for such differences. Such results illustrate the big potential of nanoparticle in engineering surface wettability of a solid-liquid-gas system.


Assuntos
Coloides/química , Gases , Nanopartículas/química , Molhabilidade , Óxido de Alumínio , Ouro
16.
Langmuir ; 27(6): 2211-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21338112

RESUMO

This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.

17.
Adv Colloid Interface Sci ; 159(1): 72-93, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20591394

RESUMO

This paper begins with an extensive review of the formation of gas bubbles, with a particular focus on the dynamics of triple lines, in a pure liquid and progresses into an experimental study of bubble formation on a micrometer-sized nozzle immersed in a quiescent pool of aqueous gold nanofluid. Unlike previous studies of triple line dynamics in a nanofluid under evaporation or boiling conditions, which are mainly caused by the solid surface modification due to particle sedimentation, this work focuses on the roles of nanoparticles suspended in the liquid phase. The experiments are conducted under a wide range of flow rates and nanoparticle concentrations, and many interesting phenomena are revealed. It is observed that nanofluids prevent the spreading of the triple line during bubble formation, i.e. the triple line is pinned somewhere around the middle of the tube wall during the rapid bubble formation stage whereas it spreads to the outer edge of the tube for pure water. A unique 'stick-slip' movement of the triple line is also observed for bubbles forming in nanofluids. At a given bubble volume, the radius of the contact line is found to be smaller for higher particle concentrations, but a reverse trend is found for the dynamic bubble contact angle. With the increase of particle concentration, the bubble frequency is raised and the bubble departure volume is decreased. The bubble shape is found to be in a good agreement with the prediction from Young-Laplace equation for given flow rates. The influence of nanoparticles on other detailed characteristics related to bubble growth inside, including the variation of bubble volume expansion rate, the radius of the curvature at the apex, the bubble height and bubble volume, is revealed. It is suggested that the variation of surface tensions and the resultant force balance at the triple line might be responsible for the modified dynamics of the triple line.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Nanotecnologia , Transição de Fase , Propriedades de Superfície , Tensão Superficial
18.
Langmuir ; 26(10): 6902-7, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20394354

RESUMO

The effect of gold nanoparticles on the formation of gas bubbles on top of a stainless steel tube is investigated in this work. Unlike other observations of bubble dynamics under evaporation or boiling conditions, which are caused by the surface modification due to particle sedimentation, this work reveals a unique phenomenon of enhanced pinning of the triple line and improved wetting by nanoparticles suspended in the liquid phase. Detailed characteristics related to bubble growth inside pure water and gold nanofluids, including the dynamics of the triple line, the variation of instantaneous contact angle, bubble height, and bubble volume expansion rate, are analyzed. The shape of the bubble is found to be in good agreement with predictions of the Young-Laplace equation by using experimental captured radius of contact line and bubble height as the two known inputs. The variation of surface tensions and the resultant force balance at the triple line are believed to be responsible for the modified dynamics of the triple line and subsequent bubble formation.


Assuntos
Gases/química , Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Tensão Superficial
19.
J Colloid Interface Sci ; 343(1): 291-7, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20038468

RESUMO

This work investigates detailed formation of air bubbles on a submerged micrometer-sized nozzle. The experimental study is conducted on a submerged nozzle of radius of 55 microm under low gas flow rate conditions (0.015-0.83 ml/min). The bubble formation is recorded by a high-speed optical camera and detailed characteristics of bubble formation such as the variations of instantaneous contact angles, bubble heights and the radii of contact lines are obtained, which shows a weak dependence on the flow rate under the conditions of current work. Using experimentally captured values of the height of bubble and the radius of contact line, the Young-Laplace equation is solved, which is found to be able to predict the bubble evolution quite well until the last milliseconds before the detachment. A force analysis of bubble formation reveals that the observed variations of contact angles and other characteristics during the bubble growth period are associated with the relative contribution of surface tension, buoyancy force and gravitational force.

20.
Nanotechnology ; 20(18): 185702, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19420625

RESUMO

This work investigates the effect of size and concentration of nanoparticles on the effective gas-liquid surface tension of aqueous solutions of bismuth telluride nanoparticles functionalized with thioglycolic acid. The gas-liquid surface tension is obtained by solving the Laplace-Young equation under experimentally measured boundary conditions and droplet parameters. The results demonstrate that the gas-liquid surface tension depends on concentration as well as nanoparticle size. Solutions containing 2.5 and 10.4 nm nanoparticle diameters have been tested. For both, a minimum surface tension exists within the range of tested mass concentrations. The largest reduction in the surface tension (>50% versus bulk liquid) occurred for the 2.5 nm nanoparticle nanofluid. Accumulation and assembly of the charged nanoparticles at the liquid-gas interface was assumed to be responsible for the surface tension of the nanofluids investigated in this work.


Assuntos
Bismuto/química , Cristalização/métodos , Gases/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Telúrio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Soluções , Propriedades de Superfície , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...