Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20242024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39308247

RESUMO

Peptihub (https://bioinformaticscollege.ir/peptihub/) is a meticulously curated repository of cancer-related peptides (CRPs) that have been documented in scientific literature. A diverse collection of CRPs is included in the PeptiHub, showcasing a spectrum of effects and activities. While some peptides demonstrated significant anticancer efficacy, others exhibited no discernible impact, and some even possessed alternative non-drug functionalities, including drug carrier or carcinogenic attributes. Presently, Peptihub houses 874 CRPs, subjected to evaluation across 10 distinct organism categories, 26 organs, and 438 cell lines. Each entry in the database is accompanied by easily accessible 3D conformations, obtained either experimentally or through predictive methodology. Users are provided with three search frameworks offering basic, advanced, and BLAST sequence search options. Furthermore, precise annotations of peptides enable users to explore CRPs based on their specific activities (anticancer, no effect, insignificant effect, carcinogen, and others) and their effectiveness (rate and IC50) under cancer conditions, specifically within individual organs. This unique property facilitates the construction of robust training and testing datasets. Additionally, PeptiHub offers 1141 features with the convenience of selecting the most pertinent features to address their specific research questions. Features include aaindex1 (in six main subcategories: alpha propensities, beta propensity, composition indices, hydrophobicity, physicochemical properties, and other properties), amino acid composition (Amino acid Composition and Dipeptide Composition), and Grouped Amino Acid Composition (Grouped amino acid composition, Grouped dipeptide composition, and Conjoint triad) categories. These utilities not only speed up machine learning-based peptide design but also facilitate peptide classification. Database URL: https://bioinformaticscollege.ir/peptihub/.


Assuntos
Bases de Dados de Proteínas , Neoplasias , Peptídeos , Humanos , Peptídeos/química , Neoplasias/metabolismo , Anotação de Sequência Molecular , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
Gene ; 930: 148858, 2024 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-39153708

RESUMO

Gliomas are the most prevalent malignancies of the central nervous system (CNS). Downregulation of microRNA­124 (miR­124) has been identified in glioma; however, its biological functions in glioma are not yet fully understood. Specificity protein 1 (SP1) is a type of transcription factor that is involved in cancer progression. In this study, we examined the targeting of Sp1 mRNA by miR-124-3p in a rat glioma model. After confirming and selecting the binding of Sp1 to miR-124 with the help of bioinformatics methods, adult male Wistar rats were used to induce glioma by microinjection of 1 × 106 C6 cells into the striatum area of brain. The rats were divided into 3 groups; intact, sham and glioma groups. The presence of glioma was confirmed 21 days after implantation through histological analysis. The expression levels of miR-124 and SP1 genes in the experimental groups were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Our data showed that the expression of miR-124 was significantly downregulated in glioma group compared to the sham and intact group, while the expression of SP1 was significantly upregulated. We found that the expression levels of miR-124 and Sp1 were decreased and increased in C6 cell line compared to the normal brain tissue cell line, respectively. The results indicated that Sp1 was identified as a direct target of miR­124 through luciferase reporter assays. In summary, this study demonstrated for the first time that miR-124 expression is downregulated and Sp1 expression is upregulated in an animal model of glioma, which, in turn, may be involved in the development of glioma brain cancer.


Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioma , MicroRNAs , Ratos Wistar , Fator de Transcrição Sp1 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Masculino , Ratos , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Progressão da Doença , Regulação para Baixo
3.
Mol Biol Rep ; 49(7): 6789-6801, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34718938

RESUMO

MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3'-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA