Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012544

RESUMO

The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Sepse , Choque Séptico , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Células-Tronco Mesenquimais/metabolismo , Sepse/etiologia , Sepse/terapia , Choque Séptico/metabolismo , Choque Séptico/terapia
2.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887383

RESUMO

Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived 'danger' factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC's immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.


Assuntos
Células-Tronco Mesenquimais , Vírus , Diferenciação Celular , Condrócitos/metabolismo , Cicatriz/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
5.
J Immunol Methods ; 495: 113082, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051226

RESUMO

The development of new diagnostic assays become a priority for managing COVID-19. To this aim, we presented here an in-house ELISA based on the production of two major recombinant and high-quality antigens from SARS-CoV-2. Full-length N and S-RBD fragment proteins fused to mouse IgG2a-Fc were produced in the CHO cell line. Secreted recombinant proteins were easily purified with standard Protein A chromatography and were used in an in-house ELISA to detect anti-N and anti-RBD IgGs in the plasma of COVID-19 RTPCR-positive patients. High reactivity against recombinant antigens was readily detected in all positive plasma samples, whereas no recognition was observed with control healthy subject's plasmas. Remarkably, unpurified recombinant N protein obtained from cell culture supernatant was also suitable for the monitoring by ELISA of IgG levels in positive patients. This work provides an early prospection for low price but high-quality serological kit development.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/fisiologia , Animais , Anticorpos Antivirais/sangue , Células CHO , Teste Sorológico para COVID-19/economia , Custos e Análise de Custo , Cricetulus , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia
6.
J Clin Med ; 9(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260801

RESUMO

Humoral immunity is critically important to control COVID-19. Long-term antibody responses remain to be fully characterized in hospitalized patients who have a high risk of death. We compared specific Immunoglobulin responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between two groups, intensive care unit (ICU) and non-ICU hospitalized patients over several weeks. Plasma specific IgG, IgM, and IgA levels were assessed using a commercial ELISA and compared to an in-house cell-based ELISA. Among the patients analyzed (mean (SD) of age, 64.4 (15.9) years, 19.2% female), 12 (46.2%) were hospitalized in ICU. IgG levels increased in non-ICU cases from the second to the eighth week after symptom onset. By contrast, IgG response was blunted in ICU patients over the same period. ICU patients with hematological malignancies had very weak or even undetectable IgG levels. While both groups had comparable levels of specific IgM antibodies, we found much lower levels of specific IgA in ICU versus non-ICU patients. In conclusion, COVID-19 ICU patients may be at risk of reinfection as their specific IgG response is declining in a matter of weeks. Antibody neutralizing assays and studies on specific cellular immunity will have to be performed.

7.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824753

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 and its associated pathology, COVID-19, have been of particular concerns these last months due to the worldwide burden they represent. The number of cases requiring intensive care being the critical point in this epidemic, a better understanding of the pathophysiology leading to these severe cases is urgently needed. Tissue lesions can be caused by the pathogen or can be driven by an overwhelmed immune response. Focusing on SARS-CoV-2, we and others have observed that this virus can trigger indeed an immune response that can be dysregulated in severe patients and leading to further injury to multiple organs. The purpose of the review is to bring to light the current knowledge about SARS-CoV-2 virologic and immunologic features. Thus, we address virus biology, life cycle, tropism for many organs and how ultimately it will affect several host biological and physiological functions, notably the immune response. Given that therapeutic avenues are now highly warranted, we also discuss the immunotherapies available to manage the infection and the clinical outcomes.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Fatores Etários , Enzima de Conversão de Angiotensina 2 , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , RNA-Polimerase RNA-Dependente de Coronavírus , Citocinas/sangue , Humanos , Imunoterapia/métodos , Pulmão/patologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/terapia , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Tropismo Viral/fisiologia , Montagem de Vírus/fisiologia , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...