Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39377924

RESUMO

Chitosan nanoparticles have emerged as a promising therapeutic platform for treating neurological disorders due to their biocompatibility, biodegradability, and ease of functionalization. One of the significant challenges in treating neurological conditions is overcoming the blood-brain barrier (BBB), which restricts the effective delivery of therapeutic agents to the brain. Addressing this barrier is crucial for the successful treatment of various neurological diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, migraine, psychotic disorders, and brain tumors. Chitosan nanoparticles offer several advantages: they enhance drug absorption, protect drugs from degradation, and enable targeted delivery. These properties open new possibilities for non-invasive therapies for neurological conditions. Numerous studies have highlighted the neuroprotective potential of chitosan nanoparticles, demonstrating improved outcomes in animal models of neurodegeneration and neuroinflammation. Additionally, surface modifications of these nanoparticles allow for the attachment of specific ligands or molecules, enhancing the precision of drug delivery to neuronal cells. Despite these advancements, several challenges persist in the clinical translation of chitosan nanoparticles. Issues such as large-scale production, regulatory hurdles, and the need for further research into long-term safety must be addressed. This review explores recent advancements in the use of chitosan nanoparticles for managing neurological disorders and outlines potential future directions in this rapidly evolving field of research.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39325272

RESUMO

Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA