Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 13(9): 1138-1151, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104505

RESUMO

The dynamics of populations evolving on an adaptive landscape depends on multiple factors, including the structure of the landscape, the rate of mutations, and effective population size. Existing theoretical work often makes ad hoc and simplifying assumptions about landscape structure, whereas experimental work can vary important parameters only to a limited extent. We here overcome some of these limitations by simulating the adaptive evolution of RNA molecules, whose fitness is determined by the thermodynamics of RNA secondary structure folding. We study the influence of mutation rates and population sizes on final mean population fitness, on the substitution rates of mutations, and on population diversity. We show that evolutionary dynamics cannot be understood as a function of mutation rate µ, population size N, or population mutation rate Nµ alone. For example, at a given mutation rate, clonal interference prevents the fixation of beneficial mutations as population size increases, but larger populations still arrive at a higher mean fitness. In addition, at the highest population mutation rates we study, mean final fitness increases with population size, because small populations are driven to low fitness by the relatively higher incidence of mutations they experience. Our observations show that mutation rate and population size can interact in complex ways to influence the adaptive dynamics of a population on a biophysically motivated fitness landscape.


Assuntos
RNA/química , RNA/genética , Genótipo , Mutação/genética , Conformação de Ácido Nucleico , Dobramento de RNA/genética , Dobramento de RNA/fisiologia , Termodinâmica
2.
Bioinformatics ; 31(3): 438-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25282646

RESUMO

SUMMARY: A wealth of large-scale genome sequencing projects opens the doors to new approaches to study the relationship between genotype and phenotype. One such opportunity is the possibility to apply genotype networks analysis to population genetics data. Genotype networks are a representation of the set of genotypes associated with a single phenotype, and they allow one to estimate properties such as the robustness of the phenotype to mutations, and the ability of its associated genotypes to evolve new adaptations. So far, though, genotype networks analysis has rarely been applied to population genetics data. To help fill this gap, here we present VCF2Networks, a tool to determine and study genotype network structure from single-nucleotide variant data. AVAILABILITY AND IMPLEMENTATION: VCF2Networks is available at https://bitbucket.org/dalloliogm/vcf2networks. CONTACT: giovanni.dallolio@kcl.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Genética Populacional , Genoma Humano , Polimorfismo de Nucleotídeo Único/genética , Software , Evolução Biológica , Genótipo , Humanos , Fenótipo
3.
BMC Genomics ; 13: 408, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22906226

RESUMO

BACKGROUND: Genomic imprinting refers to parent-of-origin dependent gene expression caused by differential DNA methylation of the paternally and maternally derived alleles. Imprinting is increasingly recognized as an important source of variation in complex traits, however, its role in explaining variation in muscle and physiological traits, especially those of commercial value, is largely unknown compared with genetic effects. RESULTS: We investigated both genetic and genomic imprinting effects on key muscle traits in mice from the Berlin Muscle Mouse population, a key model system to study muscle traits. Using a genome scan, we first identified loci with either imprinting or genetic effects on phenotypic variation. Next, we established the proportion of phenotypic variation explained by additive, dominance and imprinted QTL and characterized the patterns of effects. In total, we identified nine QTL, two of which show large imprinting effects on glycogen content and potential, and body weight. Surprisingly, all imprinting patterns were of the bipolar type, in which the two heterozygotes are different from each other but the homozygotes are not. Most QTL had pleiotropic effects and explained up to 40% of phenotypic variance, with individual imprinted loci accounting for 4-5% of variation alone. CONCLUSION: Surprisingly, variation in glycogen content and potential was only modulated by imprinting effects. Further, in contrast to general assumptions, our results show that genomic imprinting can impact physiological traits measured at adult stages and that the expression does not have to follow the patterns of paternal or maternal expression commonly ascribed to imprinting effects.


Assuntos
Impressão Genômica/genética , Músculos/metabolismo , Animais , Peso Corporal/genética , Glicogênio/genética , Camundongos , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...