Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766357

RESUMO

Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.


Assuntos
Corantes Fluorescentes , Polietilenoglicóis , Polieletrólitos , Imunoglobulina G
2.
Bioelectrochemistry ; 151: 108397, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906982

RESUMO

This work presents a new approach for the development of field-effect biosensors based on an electrolyte-insulator-semiconductor capacitor (EISCAP) modified with a stacked bilayer of weak polyelectrolyte and tobacco mosaic virus (TMV) particles as enzyme nanocarriers. With the aim to increase the surface density of virus particles and thus, to achieve a dense immobilization of enzymes, the negatively charged TMV particles were loaded onto the EISCAP surface modified with a positively charged poly(allylamine hydrochloride) (PAH) layer. The PAH/TMV bilayer was prepared on the Ta2O5-gate surface by means of layer-by-layer technique. The bare and differently modified EISCAP surfaces were physically characterized by fluorescence microscopy, zeta-potential measurements, atomic force microscopy and scanning electron microscopy. Transmission electron microscopy was used to scrutinize the PAH effect on TMV adsorption in a second system. Finally, a highly sensitive TMV-assisted EISCAP antibiotics biosensor was realized by immobilizing the enzyme penicillinase onto the TMV surface. This PAH/TMV bilayer-modified EISCAP biosensor was electrochemically characterized in solutions with different penicillin concentrations via capacitance-voltage and constant-capacitance methods. The biosensor possessed a mean penicillin sensitivity of 113 mV/dec in a concentration range from 0.1 mM to 5 mM.


Assuntos
Técnicas Biossensoriais , Vírus do Mosaico do Tabaco , Polieletrólitos , Penicilinas , Antibacterianos , Vírus do Mosaico do Tabaco/química , Eletrólitos , Técnicas Biossensoriais/métodos
3.
Foods ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267293

RESUMO

In this study, an online multi-sensing platform was engineered to simultaneously evaluate various process parameters of food package sterilization using gaseous hydrogen peroxide (H2O2). The platform enabled the validation of critical aseptic parameters. In parallel, one series of microbiological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM 675 to act as the reference method for sterility validation. By means of the multi-sensing platform together with microbiological tests, we examined sterilization process parameters to define the most effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As these parameters are mutually associated, a correlation between different factors was elaborated. The resulting correlation indicated the need for specific conditions regarding the applied H2O2 gas temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally, the novel multi-sensing platform together with the mobile electronic readout setup allowed for the online and on-site monitoring of the sterilization process, selecting the best conditions for sterility and, at the same time, reducing the use of the time-consuming and costly microbiological tests that are currently used in the food package industry.

4.
Biosensors (Basel) ; 12(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35049671

RESUMO

Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.


Assuntos
Vírus do Mosaico do Tabaco , Eletrólitos , Penicilinase/análise , Penicilinase/química , Penicilinas/análise , Penicilinas/química , Dióxido de Silício/química , Ureia/química , Urease/química
5.
N Biotechnol ; 32(1): 7-12, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25053198

RESUMO

The aim of this study was to assess the impact of nanocrystalline diamond (NCD) thin coatings on neural cell adhesion and proliferation. NCD was fabricated on fused silica substrates by microwave plasma chemical vapor deposition (MPCVD) method. Different surface terminations were performed through exposure to reactive hydrogen and by UV induced oxidation during ozone treatment. Boron doped NCD coatings were also prepared and investigated. NCD surface wettability was determined by contact angle measurement. To assess biocompatibility of the NCD coatings, the neuroblastoma SH-SY5Y cell line was used. Cells were plated directly onto diamond surfaces and cultured in medium with or without fetal bovine serum (FBS), in order to evaluate the ability of cells to adhere and to proliferate. The obtained results showed that these cells adhered and proliferated better on NCD surfaces than on the bare fused silica. The cell proliferation on NCD in medium with and without FBS after 48h from plating was on average, respectively, 20 and 58% higher than that on fused silica, irrespective of NCD surface modification. Our results showed that the hydrogenated, oxygenated and boron-doped NCD coatings can be used for biomedical purposes, especially where good optical transparency is required.


Assuntos
Diamante/farmacologia , Nanopartículas/química , Neuroblastoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos
6.
Mol Cell Probes ; 29(1): 25-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449951

RESUMO

Diamond nanoparticles (DNPs) are very attractive for biomedical applications, particularly for bioimaging. The aim of this study was to evaluate the impact of DNPs on neural cancer cells and thus to assess the possible application of DNPs for these cells imaging. For this purpose, the neuroblastoma SH-SY5Y cell line was chosen. Cells were cultured in medium with different concentrations (15, 50, 100 and 150 µg/ml) of DNPs. After 48 h of incubation, cell metabolic activity was evaluated by the XTT assay. For assessment of cellular metabolic activity, cells were also cultured on differently terminated nanocrystalline diamond (NCD) coatings in medium with 150 µg/ml of DNPs. Cell adhesion and morphology were evaluated by brightfield microscopy. Diamond nanoparticle internalization was determined by confocal microscopy. The obtained results showed that low concentrations (15, 50 and 100 µg/ml) of nanoparticles did not significantly affect the SH-SY5Y cell metabolic activity. However, a higher concentration (150 µg/ml) of DNPs statistically significantly reduced SH-SY5Y cell metabolic activity. After 48 h incubation with 150 µg/ml DNPs, cell metabolic activity was 23% lower than in medium without DNPs on standard tissue culture polystyrene.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Nanodiamantes/química , Neuroblastoma/patologia , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...