Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(41): 9759-9765, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36226789

RESUMO

In this work, to understand how an amorphous surface influences the dynamics of surface photoinduced reactions, pump-probe spectroscopy in conjunction with mass spectrometry is employed to track the ultrafast evolution of intermediates and final products with time, mass, and energy resolution. As a model system, the photoinduced reaction of CD3I adsorbed on amorphous cerium oxide films is investigated. A fraction of the first intermediates produced on a freshly prepared surface is trapped to passivate the surface. After the A-band excitation, the minimum dissociation time of CD3I indicates that CD3I adsorption geometries with either CD3 or I facing the gas phase exist; however, the transient data suggest that most molecules are adsorbed with the I atom facing the surface. CD3 and I are consumed to form I2 and reform CD3I, which are produced at a steady rate only after the intermediates have lost the excess translational energy released from photodissociation.

2.
J Phys Chem Lett ; 13(21): 4747-4753, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35612537

RESUMO

The detection of intermediate species and the correlation of their ultrafast dynamics with the morphology and electronic structure of a surface is crucial to fully understand and control heterogeneous photoinduced and photocatalytic reactions. In this work, the ultrafast photodissociation dynamics of CH3Br molecules adsorbed on variable-size Au clusters on MgO/Mo(100) is investigated by monitoring the CH3+ transient evolution using a pump-probe technique in conjunction with surface mass spectrometry. Furthermore, extreme-UV photoemission spectroscopy in combination with theoretical calculations is employed to study the electronic structure of the Au clusters on MgO/Mo(100). Changes in the ultrafast dynamics of the CH3+ fragment are correlated with the electronic structure of Au as it evolves from monomers to small nonmetallic clusters to larger nanoparticles with a metallic character. This work provides a new avenue to a detailed understanding of how surface-photoinduced chemical reactions are influenced by the composition and electronic structure of the surface.

3.
Nanotechnology ; 32(50)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34492643

RESUMO

In this work, the growth and stability towards O2exposure of two dimensional (2D) TaS2on a Cu(111) substrate is investigated. Large area (∼1 cm2) crystalline 2D-TaS2films with a metallic character are prepared on a single crystal Cu(111) substrate via a multistep approach based on physical vapor deposition. Analytical techniques such as Auger electron spectroscopy, low energy electron diffraction, and photoemission spectroscopy are used to characterize the composition, crystallinity, and electronic structure of the surface. At coverages below one monolayer equivalent (ML), misoriented TaS2domains are formed, which are rotated up to±13orelative to the Cu(111) crystallographic directions. The TaS2domains misorientation decreases as the film thickness approaches 1 ML, at which the crystallographic directions of TaS2and Cu(111) are aligned. The TaS2film is found to grow epitaxially on Cu(111). As revealed by low energy electron diffraction in conjunction with an atomic model simulation, the (3 × 3) unit cells of TaS2match the (4 × 4) supercell of Cu(111). Furthermore, the exposure of TaS2to O2, does not lead to the formation of a robust tantalum oxide film, only minor amounts of stable oxides being detected on the surface. Instead, the exposure of TaS2films to O2leads predominantly to a reduction of the film thickness, evidenced by a decrease in the content of both Ta and S atoms of the film. This is attributed to the formation of oxide species that are unstable and mainly desorb from the surface below room temperature. Temperature programmed desorption spectroscopy confirms the formation of SO2, which desorbs from the surface between 100 and500 K.These results provide new insights into the oxidative degradation of 2D-TaS2on Cu(111).

4.
Sci Adv ; 6(14): eaay6650, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32284972

RESUMO

Metal oxide semiconductor junctions are central to most electronic and optoelectronic devices, but ultrafast measurements of carrier transport have been limited to device-average measurements. Here, charge transport and recombination kinetics in each layer of a Ni-TiO2-Si junction is measured using the element specificity of broadband extreme ultraviolet (XUV) ultrafast pulses. After silicon photoexcitation, holes are inferred to transport from Si to Ni ballistically in ~100 fs, resulting in characteristic spectral shifts in the XUV edges. Meanwhile, the electrons remain on Si. After picoseconds, the transient hole population on Ni is observed to back-diffuse through the TiO2, shifting the Ti spectrum to a higher oxidation state, followed by electron-hole recombination at the Si-TiO2 interface and in the Si bulk. Electrical properties, such as the hole diffusion constant in TiO2 and the initial hole mobility in Si, are fit from these transient spectra and match well with values reported previously.

5.
J Chem Phys ; 152(7): 074706, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087629

RESUMO

Rational design of novel catalytic materials used to synthesize storable fuels via the CO hydrogenation reaction has recently received considerable attention. In this work, defect poor and defect rich 2D-MoS2 as well as 2D-MoS2 decorated with Mo clusters are employed as catalysts for the generation of acetylene (C2H2) via the CO hydrogenation reaction. Temperature programmed desorption is used to study the interaction of CO and H2 molecules with the MoS2 surface as well as the formation of reaction products. The experiments indicate the presence of four CO adsorption sites below room temperature and a competitive adsorption between the CO and H2 molecules. The investigations show that CO hydrogenation is not possible on defect poor MoS2 at low temperatures. However, on defect rich 2D-MoS2, small amounts of C2H2 are produced, which desorb from the surface at temperatures between 170 K and 250 K. A similar C2H2 signal is detected from defect poor 2D-MoS2 decorated with Mo clusters, which indicates that low coordinated Mo atoms on 2D-MoS2 are responsible for the formation of C2H2. Density functional theory investigations are performed to explore possible adsorption sites of CO and understand the formation mechanism of C2H2 on MoS2 and Mo7/MoS2. The theoretical investigation indicates a strong binding of C2H2 on the Mo sites of MoS2 preventing the direct desorption of C2H2 at low temperatures as observed experimentally. Instead, the theoretical results suggest that the experimental data are consistent with a mechanism in which CHO radical dimers lead to the formation of C2H2 that presents an exothermic desorption.

6.
Nano Lett ; 18(7): 4107-4114, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29856224

RESUMO

Understanding the electronic structure and charge carrier dynamics of supported clusters is important due to their many potential applications in photochemistry and catalysis. In this investigation, photoemission spectroscopy, in conjunction with femtosecond extreme ultraviolet (XUV) laser pulses, is used to investigate the electronic structure and ultrafast charge carrier dynamics at a Si(100) surface decorated with Zn clusters. Static photoemission spectroscopy is used to investigate the changes in the electronic structure as the dimensionality of the Zn is increased from small clusters composed of a very few atoms to metallic Zn particles. Furthermore, femtosecond optical-pump XUV-probe photoemission spectroscopy is employed to induce a charge transfer from the p-Si(100) substrate to the Zn clusters and to measure in real time the charge trapping at the Zn cluster as well as the subsequent charge relaxation. The ultrafast charge carrier dynamics are also investigated for small clusters and metallic Zn particles. Significant transient charging of the Zn clusters after excitation of the Si(100) substrate by 800 nm light is observed for Zn coverages greater than 0.12 ML Zn, which coincides with the formation of a Schottky barrier at the interface between the Zn particle and the p-Si(100) substrate. The transient signals show that the charge trapping time at the Zn cluster varies with the cluster size, which is rationalized based on the electronic structure of the cluster as well as the band energy alignment at the Zn cluster-Si(100) junction.

7.
Faraday Discuss ; 157: 437-49; discussion 475-500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23230781

RESUMO

Methyl iodide and methyl bromide molecules were adsorbed at submonolayer coverages on an ultrathin MgO(100) film on Mo(100) and photoexcited by 266 nm femtosecond-laser irradiation. The subsequent photodissociation and desorption dynamics were probed by time delayed multi photon ionization mass spectrometric detection of the emerging reaction products. The pronounced difference in the appearance times of the methyl radical fragments from methyl iodide and bromide is discussed on the basis of the different molecular adsorption geometries on magnesia. The surface adsorption structure also defines the alignment of the encounter complex for the observed bimolecular formation of the halogen molecules I2 and Br2 within about 1 and 2 ps, respectively. Finally, photoexcitation of co-adsorption layers of CH3I and CH3Br resulted in a heteronuclear bi-molecular reaction yielding IBr molecules.

8.
Beilstein J Nanotechnol ; 2: 618-27, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003467

RESUMO

The photodissociation of small organic molecules, namely methyl iodide, methyl bromide, and methyl chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump-probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was prepared as an ultrathin film on Mo(100). The molecular adsorption behavior was characterized by coverage dependent temperature programmed desorption spectroscopy. Submonolayer preparations were irradiated with UV light of 266 nm wavelength and the subsequently emerging methyl fragments were probed by photoionization and mass spectrometric detection. A strong dependence of the excitation mechanism and the light-induced dynamics on the type of molecule was observed. Possible photoexcitation mechanisms included direct photoexcitation to the dissociative A-band of the methyl halide molecules as well as the attachment of surface-emitted electrons with transient negative ion formation and subsequent molecular fragmentation. Both reaction pathways were energetically possible in the case of methyl iodide, yet, no methyl fragments were observed. As a likely explanation, the rapid quenching of the excited states prior to fragmentation is proposed. This quenching mechanism could be prevented by modification of the gold surface through pre-adsorption of iodine atoms. In contrast, the A-band of methyl bromide was not energetically directly accessible through 266 nm excitation. Nevertheless, the one-photon-induced dissociation was observed in the case of methyl bromide. This was interpreted as being due to a considerable energetic down-shift of the electronic A-band states of methyl bromide by about 1.5 eV through interaction with the gold substrate. Finally, for methyl chloride no photofragmentation could be detected at all.

9.
Rev Sci Instrum ; 81(10): 104103, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034102

RESUMO

A detailed account of the experimental methodology of surface pump-probe femtosecond-laser mass spectrometry is presented. This recently introduced technique enables the direct time-resolved investigation of surface reaction dynamics by monitoring the mass and the relative velocity of intermediates and products of a photoinduced surface reaction via multiphoton ionization. As a model system, the photodissociation dynamics of methyl iodide adsorbed at submonolayer coverage on magnesia ultrathin films is investigated. The magnesia surface preparation and characterization as well as the pulsed deposition of methyl iodide are described. The femtosecond-laser excitation (pump) and, in particular, the resonant multiphoton ionization surface detection (probe) schemas are discussed in detail. Results of pump-probe time-resolved methyl and iodine atom detection experiments are presented and the potential of this method for velocity-resolved photofragment analysis is evaluated.

11.
J Chem Phys ; 129(1): 011105, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18624463

RESUMO

A novel experimental approach to the investigation of surface adsorbate reaction dynamics is presented. The direct time-resolved monitoring of the surface reaction transition state and product formation dynamics were accomplished via pump-probe mass spectrometry. As an example, methyl iodide molecules adsorbed at submonolayer coverage on an ultrathin magnesia film on Mo(100) were photoexcited to the A-band by ultrafast laser pulse irradiation. Employing time-delayed multiphoton ionization the dynamics of the dissociative methyl iodide transition state and of the emerging methyl photoproduct could be detected with femtosecond resolution. The reaction times deduced from the temporal evolution of the methyl ion mass signal indicate a strong interaction of the methyl fragment with the substrate surface prior to desorption.

12.
Phys Chem Chem Phys ; 7(14): 2706-9, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16189583

RESUMO

Femtosecond nuclear dynamics of mass-selected neutral Ag2 and Ag2O2 clusters are investigated with the 'negative ion-to neutral-to positive ion'(NeNePo) technique. For the bare silver dimer, wave packet dynamics occurring in the neutral electronic ground state and in the first excited triplet state are observed after photodetachment from the anion with 3.05 eV photon energy. While the dynamics in the ground state lead to an oscillatory structure in the NeNePo-pump-probe spectra with a vibrational constant of 185 cm-1, the dynamics in the triplet state are assigned to a bound-free transition leading to dissociation. Photodetachment from the Ag2O2- complex results in the desorption of O2. The experimental data clearly show the influence of the desorbing oxygen ligand on the nuclear dynamics of the silver dimer inducing a red shift in the vibrational frequency and an intensity enhancement of the oscillatory signal.


Assuntos
Óxidos/química , Oxigênio/química , Compostos de Prata/química , Prata/química , Adsorção , Dimerização , Ligantes , Oscilometria , Fotoquímica , Prótons , Propriedades de Superfície
13.
Chemphyschem ; 6(2): 243-53, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15751346

RESUMO

The ultrafast dynamics of the bimetallic cluster Ag2Au is investigated by pump-probe negative ion-to-neutral-to-positive ion (NeNePo) spectroscopy. Preparation of the neutral cluster in a highly nonequilibrium state by electron detachment from the mass-selected anion, and subsequent probing of the neutral nuclear dynamics through two-photon ionization to the cationic state, leads to strongly probe-energy-dependent transient cation-abundance signals. The origin of this pronounced time and wavelength dependence of the ionization probability on the femtosecond scale is revealed by ab initio theoretical simulations of the transient spectra. Based on the analysis of underlying dynamics, two fundamental processes involving geometry relaxation from linear to triangular structure followed by ultrafast intramolecular vibrational energy redistribution (IVR) have been identified and for the first time experimentally observed in the frame of NeNePo spectroscopy under conditions close to zero electron kinetic energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...