Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 8(14): 7709-7715, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539140

RESUMO

Towards achieving efficient waste water treatment, the degradation of a common water pollutant, Orange G azo dye, was studied using a new hybrid catalyst and microwave irradiation. The fabrication of a hybrid catalyst based on reduced graphene oxide-titania (rGO-TiO2), was first achieved in a single mode microwave cavity by reducing the precursor consisting of graphene oxide (GO) and titania. Catalytic performance was then assessed in both microwave assisted and conventional heat treatment conditions. The hybrid catalyst showed significant improvement under microwave irradiation, with more than 88% dye degradation after 20 minutes of treatment at 120 °C. The microwave effect was found to be more dominant in the early stages of the catalysis - the hybrid catalyst decomposed ∼65% of the dye in just 5 minutes of microwave treatment compared to only 18% degradation obtained during conventional heating. The improved performance with microwaves is mainly attributed to the formation of the hot spots at the surface of the hybrid catalyst which ultimately results in higher degradation rates. The morphological and catalytic properties of the hybrid catalyst are investigated using High Resolution Transmission Electron Microscopy (HRTEM) and UV-Vis Spectroscopy, respectively. Successful reduction of GO to rGO was confirmed using Raman spectroscopy and X-ray diffraction. The outstanding performance of microwave irradiated hybrids offers a viable low energy, low carbon footprint process with a new catalyst for wastewater treatment and for highly polluted wastewater conditions where photocatalysis is deemed not feasible.

2.
Artigo em Inglês | MEDLINE | ID: mdl-19227076

RESUMO

Clear evidence for the microwave effect has been observed during experiments in which a variety of materials have been heated using experimental systems that allowed both conventional and conventional-microwave hybrid heating. A hybrid single mode cavity has been used to investigate the microwave effect during phase changes in silver iodide, barium titanate and benzil, whilst a hybrid multimode cavity has been used to investigate the microwave effect during sintering and annealing of a range of ceramic materials with different dielectric properties. Although evidence for the microwave effect was not found in every case, where it was found the results could not be explained purely in terms of temperature gradients within the materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...