Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(14): 5570-5579, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529613

RESUMO

Rational design and robust formulation processes are critical for optimal delivery of mRNA by lipid nanoparticles (LNPs). Varying degrees of heterogeneity in mRNA-LNPs can affect their biophysical and functional properties. Given the profound complexity of mRNA-LNPs, it is critical to develop comprehensive and orthogonal analytical techniques for a better understanding of these formulations. To this end, we developed a robust ultracentrifugation method for density-based separation of subpopulations of mRNA-LNPs. Four LNP formulations encapsulating human erythropoietin (hEPO) with varying functionalities were synthesized using two ionizable lipids, A and B, and two helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dierucoyl-sn-glycero-3-phosphoethanolamine (DEPE), along with cholesterol and DMG-PEG-2K. Upon ultracentrifugation on a sucrose gradient, a distinct pattern of "fractions" was observed across the gradient, from the less dense topmost fraction to the increasingly denser bottom fractions, which were harvested for comprehensive analyses. Parent LNPs, A-DOPE and B-DOPE, were resolved into three density-based fractions, each differing significantly in the hEPO expression following intravenous and intramuscular routes of administration. Parent B-DEPE LNPs resolved into two density-based fractions, with most of the payload and lipid content being attributed to the topmost fraction compared to the lower one, indicating some degree of heterogeneity, while parent A-DEPE LNPs showed remarkable homogeneity, as indicated by comparable in vivo potency, lipid numbers, and particle count among the three density-based fractions. This study is the first to demonstrate the application of density gradient-based ultracentrifugation (DGC) for a head-to-head comparison of heterogeneity as a function of biological performance and biophysical characteristics of parent mRNA-LNPs and their subpopulations.


Assuntos
Lipídeos , Nanopartículas , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lipossomos , Nanopartículas/metabolismo , RNA Interferente Pequeno/genética
2.
Cells ; 12(5)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36899821

RESUMO

Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.


Assuntos
Fibronectinas , Neoplasias , Humanos , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , RNA-Seq
3.
ACS Omega ; 7(26): 22743-22753, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811871

RESUMO

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is a proven oncogenic lncRNA across multiple cancer types. Its effects on cancer cell migration and invasion position it as a potential target for therapy on multiple levels of gene regulation. DANCR is overexpressed in non-small cell lung cancer (NSCLC), the most common lung cancer subtype with poor patient survival. To effectively deliver small interfering RNA (siRNA) against DANCR for NSCLC therapy, we used arginine-glycine-aspartic acid (RGD)-poly(ethylene glycol) (PEG)-(1-aminoethyl)-iminobis[N-oleicylcysteinyl-1-aminoethyl)propionamide] (ECO)/small interfering RNA against DANCR (siDANCR) nanoparticles to transfect A549 and NCI-H1299 cells. Over 90% DANCR silencing was observed along with inhibition of cell migration, invasion, and spheroid formation relative to transfection with negative control siRNA in RGD-PEG-ECO nanoparticles. DANCR knockdown further showed efficacy in reducing migration and invasion of epidermal growth factor receptor (EGFR)-inhibitor resistant NSCLC along with resensitization to the inhibitor. RGD-PEG-ECO/siDANCR demonstrated silencing for up to 7 d following a single transfection. The results suggest nanoparticle-mediated RNA interference against DANCR as a potential approach for NSCLC treatment by regulating cell migration and invasion in addition to improving EGFR inhibitor response.

4.
Magn Reson Imaging ; 86: 37-45, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34801672

RESUMO

Extradomain-B Fibronectin (EDB-FN) is an oncomarker that can be visualized with magnetic resonance molecular imaging (MRMI) to detect pancreatic ductal adenocarcinoma (PDAC) metastasis. In this study, we sought to assess the expression of EDB-FN in clinical samples of PDAC and to evaluate MRMI of PDAC metastasis with an EDB-FN-specific gadolinium-based contrast agent (MT218) in an orthotopic KPC-GFP-Luc mouse model. EDB-FN expression was evaluated in PDAC tissue samples through immunohistochemistry. RNA-Seq data obtained from the GEPIA2 project was evaluated to demonstrate EDB-FN expression in large patient cohorts. FLASH-3D MRI at 3 T of the KPC-GFP-Luc metastasis model was performed following injection of MT218. Tumor enhancement in MR images was correlated to postmortem distribution of KPC-GFP-Luc tumors using fluorescent and bright-field cryo-imaging and anatomical landmarks. EDB-FN immunohistochemical staining scores of human metastatic tumor stroma, (2.17 ± 0.271), metastatic tumor parenchyma (2.08 ± 0.229), primary tumor stroma (1.61 ± 0.26), and primary tumor parenchyma (1.61 ± 0.12) were significantly (p < 0.0001) higher than normal pancreas stroma (0.14 ± 0.10) and normal pancreas parenchyma (0.14 ± 0.14). EDB-FN mRNA expression in tumors is 4.98 log2(TPM + 1) and 0.18 log2(TPM + 1) in normal tissue (p < 0.01). A mouse model of EDB-FN rich PDAC metastasis exhibited T1-weighted contrast to noise (CNR) changes of 21.80 ± 4.34 in perimetastatic regions and 8.38 ± 0.79 in metastatic regions identified through cryo-imaging, significantly higher (p < 0.05) than CNR changes found in normal liver (-6.43 ± 0.92), mesentery (2.24 ± 0.92), spleen (-3.06 ± 2.38) and intestine (1.08 ± 2.15). We conclude that EDB-FN is overexpressed in metastatic and primary PDAC tumors and MRMI with MT218 enables the detection of metastatic and perimetastatic tissues.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Linhagem Celular Tumoral , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Camundongos , Imagem Molecular , Neoplasias Pancreáticas/diagnóstico por imagem
5.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34681240

RESUMO

Nucleic acids are promising for a variety of therapies, such as cancer therapy and the gene therapy of genetic disorders. The therapeutic efficacy of nucleic acids is reliant on the ability of their efficient delivery to the cytosol of the target cells. Amino lipids have been developed to aid in the cytosolic delivery of nucleic acids. This work reports a new and efficient synthetic pathway for the lipid carrier, (1-aminoethyl) iminobis [N-(oleicylcysteinyl-1-amino-ethyl)propionamide] (ECO). The previous synthesis of the ECO was inefficient and presented poor product quality control. A solution-phase synthesis of the ECO was explored, and each intermediate product was characterized with better quality control. The ECO was synthesized with a relatively high yield and high purity. The formulations of the ECO nanoparticles were made with siRNA, miRNA, or plasmid DNA, and characterized. The transfection efficiency of the nanoparticles was evaluated in vitro over a range of N/P ratios. The nanoparticles were consistent in size with previous formulations and had primarily a positive zeta potential. The ECO/siLuc nanoparticles resulted in potent luciferase silencing with minimal cytotoxicity. The ECO/miR-200c nanoparticles mediated the efficient delivery of miR-200c into the target cells. The ECO/pCMV-GFP nanoparticles resulted in substantial GFP expression upon transfection. These results demonstrate that the solution-phase synthetic pathway produced pure ECO for the efficient intracellular delivery of nucleic acids without size limitation.

6.
Pharm Res ; 38(8): 1405-1418, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34389916

RESUMO

PURPOSE: To investigate the effectiveness of targeted ECO/miR-200c in modulating tumor microenvironment and treating triple negative breast cancer (TNBC) using non-invasive magnetic resonance molecular imaging (MRMI) of extradomain B fibronectin (EDB-FN) with a targeted MRI contrast agent. METHODS: MDA-MB-231 and Hs578T TNBC cells were transfected with RGD-PEG-ECO/miR-200c. Invasive and migratory potential was evaluated using transwell, scratch wound, and spheroid formation assays. Athymic nude mice bearing orthotopic MDA-MB-231 and Hs578T xenografts were treated with weekly i.v. injection of RGD-PEG-ECO/miR-200c nanoparticles at 1.0 mg/kg/week RNA for 6 weeks. MRMI of EDB-FN was performed using a targeted contrast agent MT218 [ZD2-N3-Gd(DO3A)] on a 3 T MRS 3000 scanner. T1-weighted images were acquired following intravenous injection of MT218 at dose of 0.1 mmol/kg using a fast spin echo axial sequence with respiratory gating. RESULTS: Systemic administration of RGD-PEG-ECO/miR-200c nanoparticles in mice bearing orthotopic TNBC xenografts significantly suppressed tumor progression without toxic side-effects. MRMI with MT218 revealed that the treatment significantly suppressed tumor proliferation as compared to the control. MRMI also showed that the miR-200c treatment altered tumor microenvironment by reducing EDB-FN expression, as evidenced by decreased contrast enhancement in both MDA-MB-231 and Hs578T tumors. The reduction of EDB-FN was confirmed by immunohistochemistry. CONCLUSIONS: Targeted delivery of miR-200c with RGD-PEG-ECO/miR-200c nanoparticles effectively modulates tumor microenvironment and suppresses TNBC proliferation in animal models. MRMI of tumor EDB-FN expression is effective to non-invasively monitor tumor response and therapeutic efficacy of RGD-PEG-ECO/miR-200c nanoparticles in TNBC.


Assuntos
MicroRNAs/administração & dosagem , Imagem Molecular/métodos , Nanopartículas/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Feminino , Fibronectinas/análise , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , MicroRNAs/análise , Invasividade Neoplásica , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Front Oncol ; 10: 586727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194740

RESUMO

The survival of pancreatic cancer patients can be greatly improved if their disease is detected at an early, potentially curable stage. Magnetic resonance molecular imaging (MRMI) of oncoproteins is a promising strategy for accurate, early detection of the disease. Here, we test the hypothesis that MRMI of extradomain-B fibronectin (EDB-FN), an abundant oncoprotein in the tumor extracellular matrix, can overcome the stromal barriers of pancreatic cancer to facilitate effective molecular imaging and detection of small tumors. Specimens of normal, premalignant, and malignant human pancreatic tissues were stained with a peptide-fluorophore conjugate (ZD2-Cy5.5) to assess EDB-FN binding and expression. MRMI with ZD2-N3-Gd(HP-DO3A) (MT218) specific to EDB-FN and MRI with Gd(HP-DO3A) were performed in three murine models bearing human pancreatic cancer xenografts, including a Capan-1 flank model, a BxPC3-GFP-Luc and a PANC-1-GFP-Luc intrapancreatic xenograft model. Tumor enhancement of the contrast agents was analyzed and compared. Staining of human tissue samples with ZD2-Cy5.5 revealed high EDB-FN expression in pancreatic tumors, moderate expression in premalignant tissue, and little expression in normal tissue. MRMI with MT218 generated robust intratumoral contrast, clearly detected and delineated small tumors (smallest average size: 6.1 mm2), and out-performed conventional contrast enhanced MRI with Gd(HP-DO3A). Quantitative analysis of signal enhancement revealed that MT218 produced 2.7, 2.1, and 1.6 times greater contrast-to-noise ratio (CNR) than the clinical agent in the Capan-1 flank, BxPC3-GFP-Luc and PANC-1-GFP-Luc intrapancreatic models, respectively (p < 0.05). MRMI of the ECM oncoprotein EDB-FN with MT218 is able to generate superior contrast enhancement in small pancreatic tumors and provide accurate tumor delineation in animal models. Early, accurate detection and delineation of pancreatic cancer with high-resolution MRMI has the potential to guide timely treatment and significantly improve the long-term survival of pancreatic cancer patients.

8.
Theranostics ; 10(24): 11127-11143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042274

RESUMO

Antineoplastic resistance represents a multifaceted challenge for cancer therapy and diagnostics. Extensive molecular heterogeneity, even within neoplasms of the same type, can elicit distinct outcomes of administering therapeutic pressures, frequently leading to the development of drug-resistant populations. Improved success of oncotherapies merits the exploration of precise molecular imaging technologies that can detect not only anatomical but also molecular changes in tumors and their microenvironment, early on in the treatment regimen. To this end, we developed magnetic resonance molecular imaging (MRMI) strategies to target the extracellular matrix oncoprotein, extradomain-B fibronectin (EDB-FN), for non-invasive assessment and therapeutic monitoring of drug-resistant colorectal cancer (CRC). Methods: Two drug-resistant CRC lines generated from parent DLD-1 and RKO cells by long-term treatment with 5'-FU and 5'-FU plus CB-839 respectively, were characterized for functional and gene expression changes using 3D culture, transwell invasion, qRT-PCR, and western blot assays. Contrast-enhanced MRMI of EDB-FN was performed in athymic nu/nu mice bearing subcutaneous tumor xenografts with 40 µmol/kg dose of macrocyclic ZD2-targeted contrast agent MT218 [ZD2-N3-Gd (HP-DO3A)] on a 3T MRS 3000 scanner. Immunohistochemistry was conducted on patient specimens and xenografts using anti-EDB-FN antibody G4. Results: Analyses of TCGA and GTEx databases revealed poor prognosis of colon cancer patients with higher levels of EDB-FN. Similarly, immunohistochemical staining of patient specimens showed increased EDB-FN expression in primary colon adenocarcinoma and hepatic metastases, but none in normal adjacent tissues. Drug-resistant DLD1-DR and RKO-DR cells were also found to demonstrate enhanced invasive potential and significantly elevated EDB-FN expression over their parent counterparts. MRMI of EDB-FN with 40 µmol/kg dose of MT218 (60% lower than the clinical dose) resulted in robust signal enhancement in the drug-resistant CRC xenografts with 84-120% increase in their contrast-to-noise ratios (CNRs) over the non-resistant counterparts. The feasibility of non-invasive therapeutic monitoring using MRMI of EDB-FN was also evaluated in drug-resistant DLD1-DR tumors treated with a pan-AKT inhibitor MK2206-HCl. The treated drug-resistant tumors failed to respond to therapy, which was accurately detected by MRMI with MT218, demonstrating higher signal enhancement and increased CNRs in the 4-week follow-up scans over the pre-treatment scans. Conclusions: EDB-FN is a promising molecular marker for assessing drug resistance. MRMI of EDB-FN with MT218 at a significantly reduced dose can facilitate effective non-invasive assessment and treatment response monitoring of drug-resistant CRC, highlighting its translational potential for active surveillance and management of CRC and other malignancies.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Neoplasias Colorretais/diagnóstico , Fibronectinas/análise , Recidiva Local de Neoplasia/epidemiologia , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Meios de Contraste/administração & dosagem , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Monitoramento de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos , Feminino , Fibronectinas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Camundongos , Imagem Molecular/métodos , Terapia Neoadjuvante/métodos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
9.
Mol Imaging Biol ; 22(6): 1532-1542, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32789648

RESUMO

PURPOSE: Oral squamous cell carcinoma (OSCC) has not seen a substantial improvement in patient survival despite therapeutic advances, making accurate detection and characterization of the disease a clinical priority. Here, we aim to demonstrate the effectiveness of magnetic resonance imaging (MRI) with the targeted MRI contrast agent MT218 specific to extradomain-B fibronectin (EDB-FN) in the tumor microenvironment for detection and characterization of aggressive OSCC tumors. PROCEDURES: EDB-FN expression was evaluated in human normal tongue and OSCC specimens with immunohistochemistry. Invasiveness of human CAL27, HSC3, and SCC4 OSCC cells was analyzed with spheroid formation and transwell assays. EDB-FN expression in the cells was analyzed with semiquantitative real-time PCR, western blotting, and a peptide binding study with confocal microscopy. Contrast-enhanced MRI with MT218 was performed on subcutaneous OSCC mouse models at a dose of 0.04 mmol/kg, using gadoteridol (0.1 mmol/kg) as a control. RESULTS: Strong EDB-FN expression was observed in human untreated primary and metastatic OSCC, reduced expression in treated OSCC, and little expression in normal tongue tissue. SCC4 and HSC3 cell lines demonstrated high invasive potential with high and moderate-EDB-FN expression, respectively, while CAL27 showed little invasive potential and low-EDB-FN expression. In T1-weighted MRI, MT218 produced differential contrast enhancement in the subcutaneous tumor models in correlation with EDB-FN expression in the cancer cells. Enhancement in the high-EDB-FN tumors was greater with MT218 at 0.04 mmol/kg than gadoteridol at 0.1 mmol/kg. CONCLUSIONS: The results suggest EDB-FN has strong potential as an imageable biomarker for aggressive OSCC. MRMI results demonstrate the effectiveness of MT218 and the potential for differential diagnostic imaging of oral cancer for improving the management of the disease.


Assuntos
Fibronectinas/química , Espectroscopia de Ressonância Magnética , Imagem Molecular , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/diagnóstico , Animais , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Meios de Contraste/química , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Neoplasias Bucais/genética , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cells ; 9(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756405

RESUMO

Breast tumor heterogeneity is a major impediment to oncotherapy. Cancer cells undergo rapid clonal evolution, thereby acquiring significant growth and invasive advantages. The absence of specific markers of these high-risk populations precludes efficient therapeutic and diagnostic management of the disease. Given the critical function of tumor microenvironment in the oncogenic circuitry, we sought to determine the expression profile of the extracellular matrix oncoprotein, extradomain-B fibronectin (EDB-FN) in invasive breast cancer. Analyses of TCGA/GTEx databases and immunostaining of clinical samples found a significant overexpression of EDB-FN in breast tumors, which correlated with poor overall survival. Significant upregulation of EDB-FN was observed in invasive cell populations generated from relatively less invasive MCF7 and MDA-MB-468 cells by long-term TGF-ß treatment and acquired chemoresistance. Treatment of the invasive cell populations with an AKT inhibitor (MK2206-HCl) reduced their invasive potential, with a concomitant decrease in their EDB-FN expression, partly through the phosphoAKT-SRp55 pathway. EDB-FN downregulation, with direct RNAi of EDB-FN or indirectly through RNAi of SRp55, also resulted in reduced motility of the invasive cell populations, validating the correlation between EDB-FN expression and invasion of breast cancer cells. These data establish EDB-FN as a promising molecular marker for non-invasive therapeutic surveillance of aggressive breast cancer.


Assuntos
Neoplasias da Mama/patologia , Fibronectinas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral
12.
Mol Ther ; 28(1): 293-303, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31611143

RESUMO

Stargardt disease (STGD) is an autosomal recessive retinal disorder caused by a monogenic ABCA4 mutation. Currently, there is no effective therapy to cure Stargardt disease. The replacement of mutated ABCA4 with a functional gene remains an attractive strategy. In this study, we have developed a non-viral gene therapy using nanoparticles self-assembled by a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid. The nanoparticles mediated efficient intracellular gene transduction in wild-type (WT) and Abca4-/- mice. Specific ABCA4 expression in the outer segment of photoreceptors was achieved by incorporating a rhodopsin promoter into the plasmids. The ECO/pRHO-ABCA4 nanoparticles induced substantial and specific ABCA4 expression for at least 8 months, 35% reduction in A2E accumulation on average, and a delayed Stargardt disease progression for at least 6 months in Abca4-/- mice. ECO/plasmid nanoparticles constitute a promising non-viral gene therapy platform for Stargardt disease and other visual dystrophies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/administração & dosagem , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Lipopeptídeos/administração & dosagem , Nanopartículas/química , Rodopsina/administração & dosagem , Doença de Stargardt/terapia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Lipopeptídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Fotorreceptoras/metabolismo , Plasmídeos/genética , Plasmídeos/uso terapêutico , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Rodopsina/genética , Doença de Stargardt/genética , Transfecção
13.
Front Oncol ; 9: 1351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850230

RESUMO

MR molecular imaging (MRMI) of abundant oncogenic biomarkers in tumor microenvironment has the potential to provide precision cancer imaging in high resolution. Extradomain-B fibronectin (EDB-FN) is an oncogenic extracellular matrix protein, highly expressed in aggressive triple negative breast cancer. A targeted macrocyclic gadolinium-based contrast agent (GBCA) ZD2-N3-Gd(HP-DO3A) (MT218), specific to EDB-FN, was developed for MRMI of aggressive breast cancer. The effectiveness of different doses of MT218 for MRMI was tested in MDA-MB-231 and Hs578T human triple negative breast cancer models. At clinical dose of 0.1 and subclinical dose of 0.04 mmol Gd/kg, MT218 rapidly bound to the extracellular matrix EDB-FN and produced robust tumor contrast enhancement in both the tumor models, as early as 1-30 min post-injection. Substantial tumor enhancement was also observed in both the models with MT218 at doses as low as 0.02 mmol Gd/kg, which was significantly better than the clinical agent Gd(HP-DO3A) at 0.1 mmol Gd/kg. Little non-specific enhancement was observed in the normal tissues including liver, spleen, and brain for MT218 at all the tested doses, with renal clearance at 30 min. These results demonstrate that MRMI with reduced doses of MT218 is safe and effective for sensitive and specific imaging of aggressive breast cancers.

14.
Nucleic Acid Ther ; 29(4): 195-207, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31140918

RESUMO

Nanoparticle based siRNA formulations often suffer from aggregation and loss of function during storage. We in this study report a frozen targeted RGD-polyethylene glycol (PEG)-ECO/siß3 nanoparticle formulation with a prolonged shelf life and preserved nanoparticle functionality. The targeted RGD-PEG-ECO/siß3 nanoparticles are formed by step-wised self-assembly of RGD-PEG-maleimide, ECO, and siRNA. The nanoparticles have a diameter of 224.5 ± 9.41 nm and a zeta potential to 45.96 ± 3.67 mV in water and a size of 234.34 ± 3.01 nm and a near neutral zeta potential in saline solution. The addition of sucrose does not affect their size and zeta potential and substantially preserves the integrity and biological activities of frozen and lyophilized formulations of the targeted nanoparticles. The frozen formulation with as low as 5% sucrose retains nanoparticle integrity (90% siRNA encapsulation), size distribution (polydispersity index [PDI] ≤20%), and functionality (at least 75% silencing efficiency) at -80°C for at least 1 year. The frozen RGD-PEG-ECO/siß3 nanoparticle formulation exhibits excellent biocompatibility, with no adverse effects on hemocompatibility and minimal immunogenicity. As RNAi holds the promise in treating the previously untreatable diseases, the frozen nanoparticle formulation with the low sucrose concentration has the potential to be a delivery platform for clinical translation of RNAi therapeutics.


Assuntos
Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , RNA Interferente Pequeno/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Interferência de RNA , RNA de Cadeia Dupla/efeitos dos fármacos , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/química
15.
Bioconjug Chem ; 30(3): 907-919, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30739442

RESUMO

Long noncoding RNAs (lncRNAs), by virtue of their versatility and multilevel gene regulation, have emerged as attractive pharmacological targets for treating heterogeneous and complex malignancies like triple-negative breast cancer (TNBC). Despite multiple studies on lncRNA functions in tumor pathology, systemic targeting of these "undruggable" macromolecules with conventional approaches remains a challenge. Here, we demonstrate effective TNBC therapy by nanoparticle-mediated RNAi of the oncogenic lncRNA DANCR, which is significantly overexpressed in TNBC. Tumor-targeting RGD-PEG-ECO/siDANCR nanoparticles were formulated via self-assembly of multifunctional amino lipid ECO, cyclic RGD peptide-PEG, and siDANCR for systemic delivery. MDA-MB-231 and BT549 cells treated with the therapeutic RGD-PEG-ECO/siDANCR nanoparticles exhibited 80-90% knockdown in the expression of DANCR for up to 7 days, indicating efficient intracellular siRNA delivery and sustained target silencing. The RGD-PEG-ECO/siDANCR nanoparticles mediated excellent in vitro therapeutic efficacy, reflected by significant reduction in the invasion, migration, survival, tumor spheroid formation, and proliferation of the TNBC cell lines. At the molecular level, functional ablation of DANCR dynamically impacted the oncogenic nexus by downregulating PRC2-mediated H3K27-trimethylation and Wnt/EMT signaling, and altering the phosphorylation profiles of several kinases in the TNBC cells. Furthermore, systemic administration of the RGD-PEG-ECO/siDANCR nanoparticles at a dose of 1 mg/kg siRNA in nude mice bearing TNBC xenografts resulted in robust suppression of TNBC progression with no overt toxic side-effects, underscoring the efficacy and safety of the nanoparticle therapy. These results demonstrate that nanoparticle-mediated modulation of onco-lncRNAs and their molecular targets is a promising approach for developing curative therapies for TNBC and other cancers.


Assuntos
Terapia Genética , Nanopartículas , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/administração & dosagem , Neoplasias de Mama Triplo Negativas/terapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , RNA Interferente Pequeno/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Bioconjug Chem ; 30(3): 667-678, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30582790

RESUMO

CRISPR/Cas9 system is a promising approach for gene editing in gene therapy. Effective gene editing requires safe and efficient delivery of CRISPR/Cas9 system in target cells. Several new multifunctional pH-sensitive amino lipids were designed and synthesized with modification of the amino head groups for intracellular delivery of CRISPR/Cas9 system. These multifunctional pH-sensitive amino lipids exhibited structurally dependent formulation of stable nanoparticles with the DNA plasmids of CRISPR/Cas9 system with the sizes ranging from 100 to 200 nm. The amino lipid plasmid DNA nanoparticles showed pH-sensitive hemolysis with minimal hemolytic activity at pH 7.4 and increased hemolysis at acidic pH (pH = 5.5, 6.5). The nanoparticles exhibited low cytotoxicity at an N/P ratio of 10. Expression of both Cas9 and sgRNA of the CRISPR/Cas9 system was in the range from 4.4% to 33%, dependent on the lipid structure in NIH3T3-GFP cells. The amino lipids that formed stable nanoparticles with high expression of both Cas9 and sgRNA mediated high gene editing efficiency. ECO and iECO mediated more efficient gene editing than other tested lipids. ECO mediated up to 50% GFP suppression based on observations with confocal microscopy and nearly 80% reduction of GFP mRNA based on RT-PCR measurement in NIH3T3-GFP cells. The multifunctional pH-sensitive amino lipids have the potential for efficient intracellular delivery of CRISPR/Cas9 for effective gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Concentração de Íons de Hidrogênio , Lipídeos/química , Animais , DNA/química , Proteínas de Fluorescência Verde/genética , Hemólise/efeitos dos fármacos , Lipídeos/síntese química , Lipídeos/farmacologia , Camundongos , Células NIH 3T3 , Plasmídeos
17.
Mol Ther Nucleic Acids ; 7: 42-52, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624218

RESUMO

Development of a gene delivery system with high efficiency and a good safety profile is essential for successful gene therapy. Here we developed a targeted non-viral delivery system using a multifunctional lipid ECO for treating Leber's congenital amaurosis type 2 (LCA2) and tested this in a mouse model. ECO formed stable nanoparticles with plasmid DNA (pDNA) at a low amine to phosphate (N/P) ratio and mediated high gene transfection efficiency in ARPE-19 cells because of their intrinsic properties of pH-sensitive amphiphilic endosomal escape and reductive cytosolic release (PERC). All-trans-retinylamine, which binds to interphotoreceptor retinoid-binding protein (IRBP), was incorporated into the nanoparticles via a polyethylene glycol (PEG) spacer for targeted delivery of pDNA into the retinal pigmented epithelium. The targeted ECO/pDNA nanoparticles provided high GFP expression in the RPE of 1-month-old Rpe65-/- mice after subretinal injection. Such mice also exhibited a significant increase in electroretinographic activity, and this therapeutic effect continued for at least 120 days. A safety study in wild-type BALB/c mice indicated no irreversible retinal damage following subretinal injection of these targeted nanoparticles. All-trans-retinylamine-modified ECO/pDNA nanoparticles provide a promising non-viral platform for safe and effective treatment of RPE-specific monogenic eye diseases such as LCA2.

18.
Adv Healthc Mater ; 5(22): 2882-2895, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27723260

RESUMO

RNAi-mediated knockdown of oncogenes associated with drug resistance can potentially enhance the efficacy of chemotherapy. Here, we have designed and developed targeted dual pH-sensitive lipid-siRNA self-assembly nanoparticles, RGD-PEG(HZ)-ECO/siRNA, which can efficiently silence the oncogene, eukaryotic translation initiation factor 4E (eIF4E), and consequently resensitize triple-negative breast tumors to paclitaxel. The dual pH-sensitive function of these nanoparticles facilitates effective cytosolic siRNA delivery in cancer cells, both in vitro and in vivo. Intravenous injection of RGD-PEG(HZ)-ECO/siRNA nanoparticles (1.0 mg-siRNA/kg) results in effective gene silencing for at least one week in MDA-MB-231 tumors. In addition, treatment of athymic nude mice with RGD-PEG(HZ)-ECO/sieIF4E every 6 days for 6 weeks down-regulates the overexpression of eIF4E and resensitizes paclitaxel-resistant MDA-MB-231 tumors to paclitaxel, resulting in significant tumor regression at a low dose, with negligible side effects. Moreover, repeated injections of the RGD-PEG(HZ)-ECO/siRNA nanoparticles in immunocompetent mice result in minimal immunogenicity, demonstrating their safety and low toxicity. These multifunctional lipid/siRNA nanoparticles constitute a versatile platform of delivery of therapeutic siRNA for treating cancer and other human diseases.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Citosol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Inativação Gênica/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Interferência de RNA/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo
19.
Bioconjug Chem ; 27(1): 19-35, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26629982

RESUMO

RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in in vitro and in vivo siRNA delivery and gene silencing.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , RNA Interferente Pequeno/administração & dosagem , Aminas/química , Animais , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Relação Estrutura-Atividade
20.
PLoS Genet ; 10(7): e1004511, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25033455

RESUMO

Accumulation of genome rearrangements is a characteristic of aged tissues. Since genome rearrangements result from faulty repair of DNA double strand breaks (DSBs), we hypothesized that DNA DSB repair becomes less efficient with age. The Non-Homologous End Joining (NHEJ) pathway repairs a majority of DSBs in vertebrates. To examine age-associated changes in NHEJ, we have generated an R26NHEJ mouse model in which a GFP-based NHEJ reporter cassette is knocked-in to the ROSA26 locus. In this model, NHEJ repair of DSBs generated by the site-specific endonuclease, I-SceI, reconstitutes a functional GFP gene. In this system NHEJ efficiency can be compared across tissues of the same mouse and in mice of different age. Using R26NHEJ mice, we found that NHEJ efficiency was higher in the skin, lung, and kidney fibroblasts, and lower in the heart fibroblasts and brain astrocytes. Furthermore, we observed that NHEJ efficiency declined with age. In the 24-month old animals compared to the 5-month old animals, NHEJ efficiency declined 1.8 to 3.8-fold, depending on the tissue, with the strongest decline observed in the skin fibroblasts. The sequence analysis of 300 independent NHEJ repair events showed that, regardless of age, mice utilize microhomology sequences at a significantly higher frequency than expected by chance. Furthermore, the frequency of microhomology-mediated end joining (MMEJ) events increased in the heart and lung fibroblasts of old mice, suggesting that NHEJ becomes more mutagenic with age. In summary, our study provides a versatile mouse model for the analysis of NHEJ in a wide range of tissues and demonstrates that DNA repair by NHEJ declines with age in mice, which could provide a mechanism for age-related genomic instability and increased cancer incidence with age.


Assuntos
Envelhecimento/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Envelhecimento/patologia , Animais , Sequência de Bases , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Fibroblastos , Técnicas de Introdução de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...