Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(58): 121370-121392, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996596

RESUMO

Benzotriazole UV stabilizers (BUVs) are a group of industrial chemicals used in various consumer products and industrial applications. Due to its large-scale production and use, BUVs have been detected in all environmental matrices. Humans are exposed to BUVs from environmental media, food, personal care products (PCPs), and consumer products. As a result, BUVs are detected in human breast milk, attracting researchers and regulatory bodies worldwide. BUVs such as UV-328 exhibit the characteristics of persistent organic pollutants (POPs); hence, it has been recently listed under Stockholm Convention POP list. The current review focuses on the occurrence of BUVs in the environment with emphasis on persistency, bioaccumulation, and toxicity (PBT). Scarcity of scientific data on BUVs' properties, environmental occurrence, exposure levels, and effects on organisms poses significant challenges to the policymakers and regulatory bodies in adopting management strategies. The need for a science-based integrated framework for risk assessment and management of BUVs is recommended. Considering the potential threat of BUVs to human health and the environment, it is recommended that BUVs should be taken as a subject of priority research. Studies on the degradation and transformation route of BUVs need to be explored for the sound management of BUVs.


Assuntos
Monitoramento Ambiental , Raios Ultravioleta , Feminino , Humanos , Medição de Risco , Bioacumulação
2.
Sci Total Environ ; 882: 163381, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030358

RESUMO

Occurrence of benzotriazole ultraviolet stabilizers (BUVs) in different environmental matrices has attracted researchers and regulatory agencies worldwide due to its persistency, bioaccumulative and toxic properties. Environmental occurrence of BUVs in Indian freshwater is lacking. The present study analyzed six targeted BUVs in surface water and sediments of three rivers of Central India. BUVs were determined in pre- and post-monsoon seasons to reveal their concentration, spatio-temporal distribution and probable ecological risks. Results indicated that total concentration of BUVs (Æ©BUVs) ranged from ND to 42.88 µg/L in water, and ND to 165.26 ng/g in sediments with UV-329 as the predominant BUV in surface water and sediments during pre- and post-monsoon seasons. Surface water samples from Pili River, and sediment of Nag River accounted for maximum BUVs concentration. Partitioning coefficient results confirmed the effective transfer of BUVs from overlaying water to sediments. The observed concentration of BUVs in water and sediments posed low ecological risk to planktons. Untreated municipal discharges and poor waste management practices including dumping of wastes might be the sources of BUVs in water bodies.

3.
Environ Sci Pollut Res Int ; 29(10): 14830-14845, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34622401

RESUMO

The COVID-19 pandemic has resulted in the massive generation of biomedical waste (BMW) and plastic waste (PW). This sudden spike in BMW and PW has created challenges to the existing waste management infrastructure, especially in developing countries. Safe disposal of PW and BMW is essential; otherwise, this virus will lead to a waste pandemic. This paper reviews the generation of BMW and PW before and during the COVID-19 pandemic, the regulatory framework for BMW management, policy interventions for COVID-19-based BMW (C-BMW), the capacity of BMW treatment and disposal facilities to cope with the challenges, possible management strategies, and perspectives in the Indian context. This study indicated that policy intervention helped minimize the general waste treated as C-BMW, especially during the second pandemic. Inadequacy of common BMW treatment facilities' (CBMWTFs) capacity to cope with the BMW daily generation was observed in some states resulting in compromised treatment conditions. Suggestions for better management of BMW and PW include decontamination of used personal protective equipment (PPEs) and recycling, alternate materials for PPEs, segregation strategies, and use of BMW for co-processing in cement kilns. All upcoming CBMWTFs should be equipped with higher capacity and efficient incinerators for the sound management of BMW. Post-pandemic monitoring of environmental compartments is imperative to assess the possible impacts of pandemic waste.


Assuntos
COVID-19 , Resíduos de Serviços de Saúde , Gerenciamento de Resíduos , Humanos , Incineração , Pandemias/prevenção & controle
4.
Artigo em Inglês | MEDLINE | ID: mdl-34355647

RESUMO

India has more than 202 biomedical waste incinerators, however, knowledge on the chemical characteristics of incinerator ash is lacking. The objective of this study was to evaluate the lecahablility characteristics of bottom ash and to study the levels of incineration by-products viz. polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). Bottom ash samples from 13 common biomedical waste treatment facilities (CBMWTF) were colleted and subjected to leachig test, sequential extraction procedure (SEP) and PAHs and PCBs analysis. Among metals, cadmium, chromium, manganese, lead and zinc were found higher than the regulatory limits indicating its hazardous nature. SEP showed that substantial fraction of Cd (30%) and Zn (25%) were associated with leachable fractions, whereas metals such as Cr, Fe, Mn, and Ni were mainly associated with reducible, organics and residual fractions. Concentrations of USEPA 16 priority PAHs ranged between 0.17-12.67 mg kg-1 and the total toxic equivalents (TEQ) were in the range of 0.9-421.9 ng TEQ/g. PAHs with 4-rings dominated all the samples and accounted for 68% to total PAHs concentrations. Concentration of Σ19 PCB congeners ranged from 420.4 to 724.3 µg kg-1. PCBs homologue pattern was dominated by mono- to tetra chlorinated congeners (60-86%). The findings indicate the need for segregation of plastics from biomedical waste, improvement of combustion efficiency, and efficient air pollution control devices for the existing incinerators in CBMWTFs.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Cinza de Carvão , Incineração , Plásticos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-24843790

RESUMO

The present investigation aims at studying the effectiveness of alkali-assisted ultrasonication on pretreatment of garden biomass (GB). Dry and powdered GB suspended in 1% NaOH was ultrasonicated for 15, 30 and 60 minutes at a frequency of 25 KHZ. The mode of action and effectiveness of alkali-assisted ultrasonication on GB was established through microscopic, scanning electron microscopic and X-ray diffraction studies. A perusal of results showed that alkali-assisted ultrasonication led to fibrillation of GB which ultimately facilitated enzymatic hydrolysis. The results also indicated that alkali-assisted ultrasonication is an efficient means of pretreatment of GB at moderate (45-50°C) working temperature and low (1%) concentration of alkali. The yield of reducing sugar after enzymatic hydrolysis increased almost six times as compared to control due to alkali-assisted ultrasonication.

6.
Waste Manag ; 34(2): 498-503, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24268472

RESUMO

Banana agricultural waste is one of the potential lignocellulosic substrates which are mostly un-utilized but sufficiently available in many parts of the world. In the present study, suitability of banana waste for biofuel production with respect to pretreatment and reducing sugar yield was assessed. The effectiveness of both acid and alkali pretreatments along with autoclaving, microwave heating and ultrasonication on different morphological parts of banana (BMPs) was studied. The data were statistically analyzed using ANOVA and numerical point prediction tool of MINITAB RELEASE 14. Accordingly, the optimum cumulative conditions for maximum recovery of reducing sugar through acid pretreatment are: leaf (LF) as the substrate with 25 min of reaction time and 180°C of reaction temperature using microwave. Whereas, the optimum conditions for alkaline pretreatments are: pith (PH) as the substrate with 51 min of reaction time and 50°C of reaction temperature using ultrasonication (US).


Assuntos
Biocombustíveis , Etanol/síntese química , Musa/química , Resíduos/análise , Ácidos/química , Álcalis/química , Micro-Ondas , Modelos Químicos , Pressão , Vapor , Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...