Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1312: 342766, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834280

RESUMO

BACKGROUND: Intravascular hemolysis is associated with massive release of hemoglobin and consequently labile heme into the blood, resulting in prothrombotic and proinflammatory events in patients. Though heme is well-known to participate in these adverse effects, it is not monitored. Instead, haptoglobin and hemoglobin serve as clinical biomarkers. The quantification of labile heme together with hemoglobin, however, should be considered in clinical diagnosis as well, to obtain a complete picture of the hemolytic state in patients. So far, quantification techniques for labile heme were not yet systematically analyzed and compared for their clinical application potential, especially in the presence of hemoglobin. RESULTS: Two commercial assays (Heme Assay Kit®, Hemin Assay Kit®) and five common approaches (pyridine hemochromogen assay, apo-horseradish peroxidase-based assay, UV/Vis spectroscopy, HPLC, mass spectrometry) were analyzed concerning their linearity, accuracy, and precision, as well as their ability to distinguish between hemoglobin-bound heme and labile heme. Further, techniques for the quantification of hemoglobin (Harboe method, SLS method, Hemastix®) were included to study their selectivity for hemoglobin and potential interference by the presence of labile heme. Both, indirect and direct approaches were suitable for the determination of a wide concentration of heme (∼0.02-45 µM) and hemoglobin (∼0.002-17 µM). A clear distinction between hemoglobin-bound heme and labile heme with one method was not possible. Thus, a novel combined approach is presented and applied to human and porcine plasma samples for the determination of hemoglobin and labile heme. SIGNIFICANCE: Our results demonstrate the need to develop improved techniques to differentiate labile and protein-bound heme for early detection of intravascular hemolysis. Here, we present a novel strategy by combining two spectroscopic methods, which is most reliable as an easy-to-use tool for the determination of hemoglobin and heme levels in plasma samples for the diagnosis of intravascular hemolysis and in basic biomedical research.


Assuntos
Heme , Hemoglobinas , Hemólise , Heme/química , Heme/análise , Hemoglobinas/análise , Humanos , Animais , Suínos , Cromatografia Líquida de Alta Pressão
2.
Biomolecules ; 13(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509066

RESUMO

Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein.


Assuntos
Hemeproteínas , Animais , Proteínas Ligantes de Grupo Heme/metabolismo , Fenômenos Biofísicos , Hemeproteínas/genética , Hemeproteínas/metabolismo , Heme/metabolismo , Ligação Proteica , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...