Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(33): 17973-17983, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34382044

RESUMO

Based on a combination of molecular dynamics simulations, and Raman and Brillouin light scattering spectroscopies, we investigate the structure and elastic properties relationship in an archetypical calcium silicate glass system. From molecular dynamics and Raman spectroscopy, we show that the atomic structure at the short and intermediate length scales is made up of long polymerized silicate chains, which adjusts itself by closing the Si-O-Si angles and leaving more space to [CaO]n edge shared polyhedra to strengthen the glass. Using Brillouin spectroscopy, we observe an increase of elastic constants of the glass with the calcium content, as the cohesion of the glass structure is enhanced through an increase of the binding between the cross-linked calcium-silicate frameworks. This result, albeit being simple in its nature, illustrates for the first time the implication of the calcium framework in the elastic behavior of the glass and will contribute substantially to the understanding of the composition-structure-property relationships in multi-component industrial glasses.

2.
J Phys Chem B ; 124(41): 9216-9223, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960602

RESUMO

Brillouin light scattering (BLS) spectroscopy and molecular dynamic (MD) simulations allowed the identification of a relationship between the elastic properties and the structure of K-containing glasses of formula (K2O)x-(SiO2)1-x, having different K2O concentrations. Excellent agreement was observed between experimental data and simulations. The peculiar elastic properties observed for these potassium silicate glasses have been extensively discussed in terms of structural and energetic features of the materials. Elastic properties were shown to be strongly dependent on the asymmetry of potential energy in the K-BO interactions and the K-NBO interactions. A low K2O content (below 10-15% K2O) appeared to be in favor of K+-BO interactions and high asymmetry of potential energy, whereas a high K2O content (from 10 to 15% K2O) was in favor of K+-NBO interactions with lower asymmetry. Our results suggest a possible explanation to the observed anomalous dependence of elastic properties of potassium silicate glasses with K2O amount.

3.
J Phys Chem B ; 120(51): 13193-13205, 2016 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-27990811

RESUMO

Molecular dynamics (MD) simulations and Brillouin light scattering (BLS) spectroscopy experiments have been carried to study the structure of sodium silicate glasses (SiO2)(100-X)(Na2O)X, where X ranges from 0 to 45 at room temperature. The MD-obtained glass structures have been subjected to energy minimization at zero temperature to extract the elastic constants also obtained by BLS spectroscopy. The structures obtained are in good agreement with the structural experimental data realized by different techniques. The simulations show that the values of the elastic constants as a function of X (i.e., Na2O mol %) agree well with those measured by BLS spectroscopy. The variations of elastic constants C11 and C44 as a function of Na2O mol % are discussed and correlated to structural results and potential energies of oxygen atoms.

4.
J Phys Chem B ; 117(18): 5757-64, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23574051

RESUMO

Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.


Assuntos
Silicatos/química , Termodinâmica , Vidro/química , Estrutura Molecular , Silicatos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...