Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 63(1): 100160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902367

RESUMO

A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.


Assuntos
Proteínas dos Microfilamentos , Proteínas Musculares
2.
FEBS Lett ; 595(6): 773-788, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33020907

RESUMO

Apolipoprotein (apo) A-I, the major structural protein of high-density lipoprotein (HDL), is present in human and mouse cerebrospinal fluid (CSF) despite its lack of expression in brain cells. To identify the origin of apoA-I in CSF, we generated intestine-specific and liver-specific Apoa1 knockout mice (Apoa1ΔInt and Apoa1Δliv mice, respectively). Lipoprotein profiles of Apoa1ΔInt and Apoa1ΔLiv mice resembled those of control littermates, whereas knockout of Apoa1 in both intestine and liver (Apoa1ΔIntΔLiv ) resulted in a 60-percent decrease in HDL-cholesterol levels, thus strongly mimicking the Apoa1-/- mice. Immunoassays revealed that mouse apoA-I was not present in the CSF of the Apoa1ΔIntΔLiv mice. Furthermore, apoA-I levels in CSF were highly correlated with plasma spherical HDL levels, which were regulated by ABCA1 and LCAT. Collectively, these results suggest that apoA-I protein in CSF originates in liver and small intestine and is taken up from the plasma.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/sangue , Apolipoproteína A-I/líquido cefalorraquidiano , Mucosa Intestinal/metabolismo , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Lipoproteínas HDL/genética , Camundongos , Camundongos Knockout , Fosfatidilcolina-Esterol O-Aciltransferase/genética
3.
PLoS One ; 15(10): e0240659, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057430

RESUMO

SR-BI binds various lipoproteins, including HDL, LDL as well as VLDL, and mediates selective cholesteryl ester (CE) uptake. HDL derived CE accumulates in cellular lipid droplets (LDs), which also store triacylglycerol (TAG). We hypothesized that SR-BI could significantly facilitate LD formation, in part, by directly transporting LDL derived neutral lipids (NL) such as CE and TAG into LDs without lipolysis and de novo lipid synthesis. SR-BI overexpression greatly increased LDL uptake and LD formation in stably transfected HeLa cells (SR-BI-HeLa). LDs isolated from SR-BI-HeLa contained 4- and 7-times more CE and TAG, respectively, than mock-transfected HeLa (Mock-HeLa). In contrast, LDL receptor overexpression in HeLa (LDLr-HeLa) greatly increased LDL uptake, degradation with moderate 1.5- and 2-fold increases of CE and TAG, respectively. Utilizing CE and TAG analogs, BODIPY-TAG (BP-TAG) and BODIPY-CE (BP-CE), for tracking LDL NL, we found that after initial binding of LDL to SR-BI-HeLa, apoB remained at the cell surface, while BP-CE and BP-TAG were sorted and simultaneously transported together to LDs. Both lipids demonstrated limited internalization to lysosomes or endoplasmic reticulum in SR-BI-HeLa. In LDLr-HeLa, NLs demonstrated clear lysosomal sequestration without their sorting to LDs. An inhibition of TAG and CE de novo synthesis by 90-95% only reduced TAG and CE LD content by 45-50%, and had little effect on BP-CE and BP-TAG transport to LDs in SR-BI HeLa. Furthermore, intravenous infusion of 1-2 mg of LDL increased liver LDs in normal (WT) but not in SR-BI KO mice. Mice transgenic for human SR-BI demonstrated higher liver LD accumulation than WT mice. Finally, Electro Spray Infusion Mass Spectrometry (ESI-MS) using deuterated d-CE found that LDs accumulated up to 40% of unmodified d-CE LDL. We conclude that SR-BI mediates LDL-induced LD formation in vitro and in vivo. In addition to cytosolic NL hydrolysis and de novo lipid synthesis, this process includes selective sorting and transport of LDL NL to LDs with limited lysosomal NL sequestration and the transport of LDL CE, and TAG directly to LDs independently of de novo synthesis.


Assuntos
Gotículas Lipídicas/metabolismo , Lipídeos/química , Lipoproteínas LDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Compostos de Boro/metabolismo , Ésteres do Colesterol/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo , Triazenos/farmacologia , Triglicerídeos/metabolismo
4.
J Lipid Res ; 61(12): 1577-1588, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32907987

RESUMO

Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1-/- mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.


Assuntos
Colesterol/metabolismo , Eritrócitos/metabolismo , Lipoproteínas/metabolismo , Transporte Biológico , Biologia Computacional , Humanos
5.
Pharmacol Res Perspect ; 8(1): e00554, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31893124

RESUMO

Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease characterized by low HDL-C levels, low plasma cholesterol esterification, and the formation of Lipoprotein-X (Lp-X), an abnormal cholesterol-rich lipoprotein particle. LCAT deficiency causes corneal opacities, normochromic normocytic anemia, and progressive renal disease due to Lp-X deposition in the glomeruli. Recombinant LCAT is being investigated as a potential therapy for this disorder. Several hepatic disorders, namely primary biliary cirrhosis, primary sclerosing cholangitis, cholestatic liver disease, and chronic alcoholism also develop Lp-X, which may contribute to the complications of these disorders. We aimed to test the hypothesis that an increase in plasma LCAT could prevent the formation of Lp-X in other diseases besides FLD. We generated a murine model of intrahepatic cholestasis in LCAT-deficient (KO), wild type (WT), and LCAT-transgenic (Tg) mice by gavaging mice with alpha-naphthylisothiocyanate (ANIT), a drug well known to induce intrahepatic cholestasis. Three days after the treatment, all mice developed hyperbilirubinemia and elevated liver function markers (ALT, AST, Alkaline Phosphatase). The presence of high levels of LCAT in the LCAT-Tg mice, however, prevented the formation of Lp-X and other plasma lipid abnormalities in WT and LCAT-KO mice. In addition, we demonstrated that multiple injections of recombinant human LCAT can prevent significant accumulation of Lp-X after ANIT treatment in WT mice. In summary, LCAT can protect against the formation of Lp-X in a murine model of cholestasis and thus recombinant LCAT could be a potential therapy to prevent the formation of Lp-X in other diseases besides FLD.


Assuntos
1-Naftilisotiocianato/efeitos adversos , Colestase Intra-Hepática/tratamento farmacológico , Lipoproteína-X/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/uso terapêutico , Animais , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Lipoproteína-X/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/farmacologia
6.
J Nutr Metab ; 2019: 7078241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863636

RESUMO

AIM: Plasma apolipoprotein C-II (apoC-II) activates lipoprotein lipase (LPL) and thus lowers plasma triglycerides (TG). We previously reported that a human apoC-II mimetic peptide (C-II-a) decreased plasma TG in apoC-II mutant mice, as well as in apoE-knockout mice. Because it is unknown what tissues take up free fatty acids (FFAs) released from TG after C-II-a peptide administration, we investigated in mice TG plasma clearance and tissue incorporation, using 3H-triolein as a tracer, with and without C-II-a treatment. METHODS AND RESULTS: Intralipid® fat emulsion was labeled with 3H-triolein and then mixed with or without C-II-a. Addition of the peptide did not alter mean particle size of the lipid emulsion particles (298 nm) but accelerated their plasma clearance. After intravenous injection into C57BL/6N mice, the plasma half-life of the 3H-triolein for control and C-II-a treated emulsions was 18.3 ± 2.2 min and 14.8 ± 0.1 min, respectively. In apoC-II mutant mice, the plasma half-life of 3H-triolein for injected control and C-II-a treated emulsions was 30.1 ± 0.1 min and 14.8 ± 0.1 min, respectively. C57BL/6N and apoC-II mutant mice at 120 minutes after the injection showed increased tissue incorporation of radioactivity in white adipose tissue when C-II-a treated emulsion was used. Higher radiolabeled uptake of lipids from C-II-a treated emulsion was also observed in the skeletal muscle of C57BL/6N mice only. In case of apoC-II mutant mice, decreased uptake of radioactive lipids was observed in the liver and kidney after addition of C-II-a to the lipid emulsion. CONCLUSIONS: C-II-a peptide promotes the plasma clearance of TG-rich lipid emulsions in wild type and apoC-II mutant mice and promotes the incorporation of fatty acids from TG in the lipid emulsions into specific peripheral tissues.

7.
J Pharmacol Exp Ther ; 368(3): 423-434, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30563940

RESUMO

Familial LCAT deficiency (FLD) is due to mutations in lecithin:cholesterol acyltransferase (LCAT), a plasma enzyme that esterifies cholesterol on lipoproteins. FLD is associated with markedly reduced levels of plasma high-density lipoprotein and cholesteryl ester and the formation of a nephrotoxic lipoprotein called LpX. We used a mouse model in which the LCAT gene is deleted and a truncated version of the SREBP1a gene is expressed in the liver under the control of a protein-rich/carbohydrate-low (PRCL) diet-regulated PEPCK promoter. This mouse was found to form abundant amounts of LpX in the plasma and was used to determine whether treatment with recombinant human LCAT (rhLCAT) could prevent LpX formation and renal injury. After 9 days on the PRCL diet, plasma total and free cholesterol, as well as phospholipids, increased 6.1 ± 0.6-, 9.6 ± 0.9-, and 6.7 ± 0.7-fold, respectively, and liver cholesterol and triglyceride concentrations increased 1.7 ± 0.4- and 2.8 ±0.9-fold, respectively, compared with chow-fed animals. Transmission electron microscopy revealed robust accumulation of lipid droplets in hepatocytes and the appearance of multilamellar LpX particles in liver sinusoids and bile canaliculi. In the kidney, LpX was found in glomerular endothelial cells, podocytes, the glomerular basement membrane, and the mesangium. The urine albumin/creatinine ratio increased 30-fold on the PRCL diet compared with chow-fed controls. Treatment of these mice with intravenous rhLCAT restored the normal lipoprotein profile, eliminated LpX in plasma and kidneys, and markedly decreased proteinuria. The combined results suggest that rhLCAT infusion could be an effective therapy for the prevention of renal disease in patients with FLD.


Assuntos
Modelos Animais de Doenças , Rim/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Lipoproteína-X/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/administração & dosagem , Animais , Dieta com Restrição de Carboidratos/efeitos adversos , Proteínas Alimentares/efeitos adversos , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteína-X/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
8.
Nat Commun ; 9(1): 1310, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615667

RESUMO

Lipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish. A human APOC2 mimetic peptide or the human very low-density lipoprotein, which carries APOC2, rescues the phenotype in apoc2 but not in lpl mutant zebrafish. Creating parabiotic apoc2 and lpl mutant zebrafish rescues the hematopoietic defect in both. Docosahexaenoic acid (DHA) is identified as an important factor in HSPC expansion. FFA-DHA, but not TG-DHA, rescues the HSPC defects in apoc2 and lpl mutant zebrafish. Reduced blood cell counts are also observed in Apoc2 mutant mice at the time of weaning. These results indicate that LPL-mediated release of the essential fatty acid DHA regulates HSPC expansion and definitive hematopoiesis.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Lipase Lipoproteica/metabolismo , Células-Tronco/citologia , Animais , Apoptose , Compostos Azo/química , Separação Celular , Feminino , Citometria de Fluxo , Cromatografia Gasosa-Espectrometria de Massas , Hematopoese , Humanos , Hidrólise , Hibridização In Situ , Lipase Lipoproteica/genética , Lipoproteínas VLDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Peptídeos/química , Triglicerídeos/química , Peixe-Zebra
9.
Ann Clin Biochem ; 55(4): 414-421, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28882064

RESUMO

Background Lecithin:cholesterol acyltransferase (LCAT) is a plasma enzyme that esterifies cholesterol. Recombinant human LCAT (rhLCAT) is now being developed as an enzyme replacement therapy for familial LCAT deficiency and as a possible treatment for acute coronary syndrome. The current 'gold standard' assay for LCAT activity involves the use of radioisotopes, thus making it difficult for routine clinical use. Methods We have developed a novel and more convenient LCAT activity assay using fluorescence-labelled cholesterol (BODIPY-cholesterol), which is incorporated into proteoliposomes as a substrate instead of radiolabelled cholesterol. Results The apparent Km and Vmax were 31.5 µmol/L and 55.8 nmol/h/nmoL, rhLCAT, respectively, for the 3H-cholesterol method and 103.1 µmol/L and 13.4 nmol/h/nmol rhLCAT, respectively, for the BODIPY-cholesterol method. Although the two assays differed in their absolute units of LCAT activity, there was a good correlation between the two test assays ( r = 0.849, P < 1.6 × 10-7, y = 0.1378x + 1.106). The BODIPY-cholesterol assay had an intra-assay CV of 13.7%, which was superior to the intra-assay CV of 20.8% for the radioisotopic assay. The proteoliposome substrate made with BODIPY-cholesterol was stable to storage for at least 10 months. The reference range ( n = 20) for the fluorescent LCAT activity assay was 4.6-24.1 U/mL/h in healthy subjects. Conclusions In summary, a novel fluorescent LCAT activity assay that utilizes BODIPY-cholesterol as a substrate is described that yields comparable results to the radioisotopic method.


Assuntos
Compostos de Boro/química , Colesterol/química , Cromatografia em Camada Fina/métodos , Testes de Química Clínica/métodos , Corantes Fluorescentes/química , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Adulto , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Fosfatidilcolina-Esterol O-Aciltransferase/normas , Proteolipídeos , Padrões de Referência , Reprodutibilidade dos Testes
10.
J Pharmacol Exp Ther ; 362(2): 306-318, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576974

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive ß-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators.


Assuntos
Cisteína/fisiologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Compostos de Sulfidrila/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Células HEK293 , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Compostos de Sulfidrila/química
11.
Circulation ; 136(5): 464-475, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473446

RESUMO

BACKGROUND: Thioredoxin (TRX)-1, a ubiquitous 12-kDa protein, exerts antioxidant and anti-inflammatory effects. In contrast, the truncated form, called TRX80, produced by macrophages induces upregulation of proinflammatory cytokines. TRX80 also promotes the differentiation of mouse peritoneal and human macrophages toward a proinflammatory M1 phenotype. METHODS: TRX1 and TRX80 plasma levels were determined with a specific ELISA. A disintegrin and metalloproteinase domain-containing protein (ADAM)-10, ADAM-17, and ADAM-10 activities were measured with SensoLyte 520 ADAM10 Activity Assay Kit, Fluorimetric, and InnoZyme TACE Activity Kit, respectively. Western immunoblots were performed with specific antibodies to ADAM-10 or ADAM-17. Angiogenesis study was evaluated in vitro with human microvascular endothelial cells-1 and in vivo with the Matrigel plug angiogenesis assay in mice. The expression of macrophage phenotype markers was investigated with real-time polymerase chain reaction. Phosphorylation of Akt, mechanistic target of rapamycin, and 70S6K was determined with specific antibodies. The effect of TRX80 on NLRP3 inflammasome activity was evaluated by measuring the level of interleukin-1ß and -18 in the supernatants of activated macrophages with ELISA. Hearts were used for lesion surface evaluation and immunohistochemical studies, and whole descending aorta were stained with Oil Red O. For transgenic mice generation, the human scavenger receptor (SR-A) promoter/enhancer was used to drive macrophage-specific expression of human TRX80 in mice. RESULTS: In this study, we observed a significant increase of plasma levels of TRX80 in old subjects compared with healthy young subjects. In parallel, an increase in expression and activity of ADAM-10 and ADAM-17 in old peripheral blood mononuclear cells compared with those of young subjects was observed. Furthermore, TRX80 was found to colocalize with tumor necrosis factor-α, a macrophage M1 marker, in human atherosclerotic plaque. In addition, TRX80 induced the expression of murine M1 macrophage markers through Akt2/mechanistic target of rapamycin-C1/70S6K pathway and activated the inflammasome NLRP3, leading to the release of interleukin-1ß and -18, potent atherogenic cytokines. Moreover, TRX80 exerts a powerful angiogenic effect in both in vitro and in vivo mouse studies. Finally, transgenic mice that overexpress human TRX80 specifically in macrophages of apoE-/- mice have a significant increase of aortic atherosclerotic lesions. CONCLUSIONS: TRX80 showed an age-dependent increase in human plasma. In mouse models, TRX80 was associated with a proinflammatory status and increased atherosclerosis.


Assuntos
Envelhecimento , Aterosclerose/patologia , Fragmentos de Peptídeos/sangue , Tiorredoxinas/sangue , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Adulto , Idoso , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Inflamação , Interleucina-18/sangue , Interleucina-1beta/sangue , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacologia
12.
Atherosclerosis ; 262: 31-38, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28486149

RESUMO

BACKGROUND AND AIMS: Concentrated fish oils, containing a mixture of long-chain monounsaturated fatty acids (LCMUFA) with aliphatic chains longer than 18 C atoms (i.e., C20:1 and C22:1), have been shown to attenuate atherosclerosis development in mouse models. It is not clear, however, how individual LCMUFA isomers may act on atherosclerosis. METHODS: In the present study, we used saury fish oil-derived concentrates enriched in either C20:1 or C22:1 isomer fractions to investigate their individual effect on atherosclerosis and lipoprotein metabolism. LDLR-deficient (LDLr-/-) mice were fed a Western diet supplemented with 5% (w/w) of either C20:1 or C22:1 concentrate for 12 wk. RESULTS: Compared to the control Western diet with no supplement, both LCMUFA isomers increased hepatic levels of LCMUFA by 2∼3-fold (p < 0.05), and decreased atherosclerotic lesion areas by more than 40% (p < 0.05), although there were no major differences in plasma lipoproteins or hepatic lipid content. Both LCMUFA isomers significantly decreased plasma CRP levels, improved Abca1-dependent cholesterol efflux capacity of apoB-depleted plasma, and enhanced Ppar transcriptional activities in HepG2 cells. LC-MS/MS proteomic analysis of lipoproteins (HDL, LDL and VLDL) revealed that both LCMUFA isomer diets resulted in similar potentially beneficial alterations in proteins involved in complement activation, blood coagulation, and lipid metabolism. Several lipoprotein proteome changes were significantly correlated with atherosclerotic plaque reduction. CONCLUSIONS: Dietary supplementation with the LCMUFA isomers C20:1 or C22:1 was equally effective in reducing atherosclerosis in LDLr-/-mice and this may partly occur through activation of the Ppar signaling pathways and favorable alterations in the proteome of lipoproteins.


Assuntos
Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Monoinsaturados/farmacologia , Óleos de Peixe/farmacologia , Hiperlipidemias/tratamento farmacológico , Lipoproteínas/sangue , Proteoma , Receptores de LDL/deficiência , Animais , Doenças da Aorta/sangue , Doenças da Aorta/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Cromatografia Líquida , Dieta Ocidental , Modelos Animais de Doenças , Predisposição Genética para Doença , Células Hep G2 , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fenótipo , Placa Aterosclerótica , Proteômica/métodos , Receptores de LDL/genética , Espectrometria de Massas em Tandem
13.
PLoS One ; 12(4): e0175824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423002

RESUMO

Serum amyloid A (SAA) is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold) increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold) higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold) expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.


Assuntos
Rim/metabolismo , Fígado/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Receptores Depuradores/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Transporte Biológico , Corantes Fluorescentes/metabolismo , Fluorbenzenos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas de Membrana Lisossomal/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Depuradores/genética , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/farmacologia , Transdução de Sinais , Transfecção , Transgenes , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
Mol Nutr Food Res ; 61(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28102587

RESUMO

SCOPE: α-Cyclodextrin (α-CD), a cyclic polymer of glucose, has been shown to lower plasma cholesterol in animals and humans; however, its effect on atherosclerosis has not been previously described. METHODS AND RESULTS: apoE-knockout mice were fed either low-fat diet (LFD; 5.2% fat, w/w), or Western high fat diet (21.2% fat) containing either no additions (WD), 1.5% α-CD (WDA); 1.5% ß-CD (WDB); or 1.5% oligofructose-enriched inulin (WDI). Although plasma lipids were similar after 11 weeks on the WD vs. WDA diets, aortic atherosclerotic lesions were 65% less in mice on WDA compared to WD (P < 0.05), and similar to mice fed the LFD. No effect on atherosclerosis was observed for the other WD supplemented diets. By RNA-seq analysis of 16S rRNA, addition of α-CD to the WD resulted in significantly decreased cecal bacterial counts in genera Clostridium and Turicibacterium, and significantly increased Dehalobacteriaceae. At family level, Comamonadaceae significantly increased and Peptostreptococcaceae showed a negative trend. Several of these bacterial count changes correlated negatively with % atherosclerotic lesion and were associated with increased cecum weight and decreased plasma cholesterol levels. CONCLUSION: Addition of α-CD to the diet of apoE-knockout mice decreases atherosclerosis and is associated with changes in the gut flora.


Assuntos
Aterosclerose/dietoterapia , Microbioma Gastrointestinal/efeitos dos fármacos , Lipídeos/sangue , alfa-Ciclodextrinas/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/microbiologia , Aterosclerose/patologia , Peso Corporal/efeitos dos fármacos , Ceco/efeitos dos fármacos , Ceco/microbiologia , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/genética , Absorção Intestinal , Lipídeos/farmacocinética , Camundongos Knockout para ApoE , alfa-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
15.
Arterioscler Thromb Vasc Biol ; 36(12): 2283-2291, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27758769

RESUMO

OBJECTIVE: We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. APPROACH AND RESULTS: Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1+/+ macrophages but not by ABCA1-/- macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1-/- macrophages. CONCLUSIONS: Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Macrófagos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Mimetismo Molecular , Peptídeos/farmacologia , Transportador 1 de Cassete de Ligação de ATP/deficiência , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Células Cultivadas , Colesterol/metabolismo , Feminino , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Peptídeos/metabolismo , Fenótipo , Esfingomielinas/metabolismo
16.
J Nutr Biochem ; 35: 58-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394692

RESUMO

Aspirin (ASA) is known to alter the production of potent inflammatory lipid mediators, but whether it interacts with omega-3 fatty acids (FAs) from fish oil to affect atherosclerosis has not been determined. The goal was to investigate the impact of a fish oil-enriched diet alone and in combination with ASA on the production of lipid mediators and atherosclerosis. ApoE(-/-) female mice were fed for 13weeks one of the four following diets: omega-3 FA deficient (OD), omega-3 FA rich (OR) (1.8g omega-3 FAs/kg·diet per day), omega-3 FA rich plus ASA (ORA) (0.1g ASA/kg·diet per day) or an omega-3 FA deficient plus ASA (ODA) with supplement levels equivalent to human doses. Plasma lipids, atherosclerosis, markers of inflammation, hepatic gene expression and aortic lipid mediators were determined. Hepatic omega-3 FAs were markedly higher in OR (9.9-fold) and ORA (7-fold) groups. Mice in both OR and ORA groups had 40% less plasma cholesterol in very low-density lipoprotein-cholesterol and low-density lipoprotein fractions, but aortic plaque area formation was only significantly lower in the ORA group (5.5%) compared to the OD group (2.5%). Plasma PCSK9 protein levels were approximately 70% lower in the OR and ORA groups. Proinflammatory aortic lipid mediators were 50%-70% lower in the ODA group than in the OD group and more than 50% lower in the ORA group. In summary, less aortic plaque lesions and aortic proinflammatory lipid mediators were observed in mice on the fish oil diet plus ASA vs. just the fish oil diet.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Aorta/efeitos dos fármacos , Aspirina/uso terapêutico , Aterosclerose/prevenção & controle , Células Progenitoras Endoteliais/efeitos dos fármacos , Óleos de Peixe/uso terapêutico , Fígado/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Aorta/imunologia , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aspirina/efeitos adversos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/imunologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Óleos de Peixe/efeitos adversos , Óleos de Peixe/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos Knockout , Pró-Proteína Convertase 9/sangue , Distribuição Aleatória , Aumento de Peso/efeitos dos fármacos
17.
Mol Nutr Food Res ; 60(10): 2208-2218, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273599

RESUMO

SCOPE: Fish oil-derived long-chain monounsaturated fatty acids (LCMUFA) containing chain lengths longer than 18 were previously shown to improve cardiovascular disease risk factors in mice. However, it is not known if LCMUFA also exerts anti-atherogenic effects. The main objective of the present study was to investigate the effect of LCMUFA on the development of atherosclerosis in mouse models. METHODS AND RESULTS: LDLR-KO mice were fed Western diet supplemented with 2% (w/w) of either LCMUFA concentrate, olive oil, or not (control) for 12 wk. LCMUFA, but not olive oil, significantly suppressed the development of atherosclerotic lesions and several plasma inflammatory cytokine levels, although there were no major differences in plasma lipids between the three groups. At higher doses 5% (w/w) LCMUFA supplementation was observed to reduce pro-atherogenic plasma lipoproteins and to also reduce atherosclerosis in ApoE-KO mice fed a Western diet. RNA sequencing and subsequent qPCR analyses revealed that LCMUFA upregulated PPAR signaling pathways in liver. In cell culture studies, apoB-depleted plasma from LDLR-K mice fed LCMUFA showed greater cholesterol efflux from macrophage-like THP-1 cells and ABCA1-overexpressing BHK cells. CONCLUSION: Our research showed for the first time that LCMUFA consumption protects against diet-induced atherosclerosis, possibly by upregulating the PPAR signaling pathway.


Assuntos
Aterosclerose/prevenção & controle , Ácidos Graxos Monoinsaturados/farmacologia , Óleos de Peixe/farmacologia , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Colesterol/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Ácidos Graxos/análise , Ácidos Graxos Monoinsaturados/química , Óleos de Peixe/química , Humanos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Knockout , Receptores de LDL/genética
18.
J Immunol ; 196(7): 3135-47, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936883

RESUMO

The class B scavenger receptors BI (SR-BI) and BII (SR-BII) are high-density lipoprotein receptors that recognize various pathogens, including bacteria and their products. It has been reported that SR-BI/II null mice are more sensitive than normal mice to endotoxin-induced inflammation and sepsis. Because the SR-BI/II knockout model demonstrates multiple immune and metabolic disorders, we investigated the role of each receptor in the LPS-induced inflammatory response and tissue damage using transgenic mice with pLiv-11-directed expression of human SR-BI (hSR-BI) or human SR-BII (hSR-BII). At 6 h after i.p. LPS injection, transgenic hSR-BI and hSR-BII mice demonstrated markedly higher serum levels of proinflammatory cytokines and 2- to 3-fold increased expression levels of inflammatory mediators in the liver and kidney, compared with wild-type (WT) mice. LPS-stimulated inducible NO synthase expression was 3- to 6-fold higher in the liver and kidney of both transgenic strains, although serum NO levels were similar in all mice. Despite the lower high-density lipoprotein plasma levels, both transgenic strains responded to LPS by a 5-fold increase of plasma corticosterone levels, which were only moderately lower than in WT animals. LPS treatment resulted in MAPK activation in tissues of all mice; however, the strongest response was detected for hepatic extracellular signal-regulated protein kinase 1 and 2 and kidney JNK of both transgenic mice. Histological examination of hepatic and renal tissue from LPS-challenged mice revealed more injury in hSR-BII, but not hSR-BI, transgenic mice versus WT controls. Our findings demonstrate that hSR-BII, and to a lesser extent hSR-BI, significantly increase LPS-induced inflammation and contribute to LPS-induced tissue injury in the liver and kidney, two major organs susceptible to LPS toxicity.


Assuntos
Injúria Renal Aguda/genética , Injúria Renal Aguda/imunologia , Antígenos CD36/genética , Lipopolissacarídeos/imunologia , Hepatopatias/genética , Hepatopatias/imunologia , Proteínas de Membrana Lisossomal/genética , Receptores Depuradores/genética , Injúria Renal Aguda/patologia , Animais , Antígenos CD36/metabolismo , Linhagem Celular , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Hepatopatias/patologia , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Depuradores/metabolismo
19.
PLoS One ; 11(2): e0150083, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919698

RESUMO

Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


Assuntos
Glomérulos Renais/efeitos dos fármacos , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Lipoproteína-X/toxicidade , Proteinúria/etiologia , Animais , Apolipoproteína A-I/metabolismo , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Membrana Basal Glomerular/efeitos dos fármacos , Membrana Basal Glomerular/patologia , Mesângio Glomerular/citologia , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Glomérulos Renais/patologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteína-X/metabolismo , Lipoproteína-X/farmacocinética , Lipoproteínas HDL/metabolismo , Lisossomos/metabolismo , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipases A2/metabolismo , Pinocitose , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/patologia
20.
J Pharmacol Exp Ther ; 356(2): 341-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26574515

RESUMO

Apolipoprotein C-II (apoC-II) is a cofactor for lipoprotein lipase, a plasma enzyme that hydrolyzes triglycerides (TGs). ApoC-II deficiency in humans results in hypertriglyceridemia. We used zinc finger nucleases to create Apoc2 mutant mice to investigate the use of C-II-a, a short apoC-II mimetic peptide, as a therapy for apoC-II deficiency. Mutant mice produced a form of apoC-II with an uncleaved signal peptide that preferentially binds high-density lipoproteins (HDLs) due to a 3-amino acid deletion at the signal peptide cleavage site. Homozygous Apoc2 mutant mice had increased plasma TG (757.5 ± 281.2 mg/dl) and low HDL cholesterol (31.4 ± 14.7 mg/dl) compared with wild-type mice (TG, 55.9 ± 13.3 mg/dl; HDL cholesterol, 55.9 ± 14.3 mg/dl). TGs were found in light (density < 1.063 g/ml) lipoproteins in the size range of very-low-density lipoprotein and chylomicron remnants (40-200 nm). Intravenous injection of C-II-a (0.2, 1, and 5 µmol/kg) reduced plasma TG in a dose-dependent manner, with a maximum decrease of 90% occurring 30 minutes after the high dose. Plasma TG did not return to baseline until 48 hours later. Similar results were found with subcutaneous or intramuscular injections. Plasma half-life of C-II-a is 1.33 ± 0.72 hours, indicating that C-II-a only acutely activates lipolysis, and the sustained TG reduction is due to the relatively slow rate of new TG-rich lipoprotein synthesis. In summary, we describe a novel mouse model of apoC-II deficiency and show that an apoC-II mimetic peptide can reverse the hypertriglyceridemia in these mice, and thus could be a potential new therapy for apoC-II deficiency.


Assuntos
Apolipoproteína C-II/genética , Materiais Biomiméticos/metabolismo , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/genética , Mutação/genética , Fragmentos de Peptídeos/genética , Sequência de Aminoácidos , Animais , Feminino , Hiperlipoproteinemia Tipo I/sangue , Hipertrigliceridemia/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Gravidez , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...