Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Physiol Meas ; 43(7)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35728793

RESUMO

Objective.This study proposes a U-net shaped Deep Neural Network (DNN) model to extract remote photoplethysmography (rPPG) signals from skin color signals to estimate Pulse Rate (PR).Approach.Three input window sizes are used in the DNN: 256 samples (5.12 s), 512 samples (10.24 s), and 1024 (20.48 s). A data augmentation algorithm based on interpolation is also used here to artificially increase the number of training samples.Main results.The proposed model outperformed a prior-knowledge rPPG method by using input signals with window of 256 and 512 samples. Also, it was found that the data augmentation procedure only increased the performance for the window of 1024 samples. The trained model achieved a Mean Absolute Error (MAE) of 3.97 Beats per Minute (BPM) and Root Mean Squared Error (RMSE) of 6.47 BPM, for the 256 samples window, and MAE of 3.00 BPM and RMSE of 5.45 BPM for the window of 512 samples. On the other hand, the prior-knowledge rPPG method got a MAE of 8.04 BPM and RMSE of 16.63 BPM for the window of 256 samples, and MAE of 3.49 BPM and RMSE of 7.92 BPM for the window of 512 samples. For the longest window (1024 samples), the concordance of the predicted PRs from the DNNs and the true PRs was higher when applying the data augmentation procedure.Significance.These results demonstrate a big potential of this technique for PR estimation, showing that the DNN proposed here may generate reliable rPPG signals even with short window lengths (5.12 s and 10.24 s), suggesting that it needs less data for a faster rPPG measurement and PR estimation.


Assuntos
Aprendizado Profundo , Fotopletismografia , Algoritmos , Frequência Cardíaca , Redes Neurais de Computação , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador
2.
Res. Biomed. Eng. (Online) ; 33(4): 293-300, Oct.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-896201

RESUMO

Abstract Introduction: Stroke is a leading cause of neuromuscular system damages, and researchers have been studying and developing robotic devices to assist affected people. Depending on the damage extension, the gait of these people can be impaired, making devices, such as smart walkers, useful for rehabilitation. The goal of this work is to analyze changes in muscle patterns on the paretic limb during free and walker-assisted gaits in stroke individuals, through accelerometry and surface electromyography (sEMG). Methods The analyzed muscles were vastus medialis, biceps femoris, tibialis anterior and gastrocnemius medialis. The volunteers walked three times on a straight path in free gait and, further, three times again, but now using the smart walker, to help them with the movements. Then, the data from gait pattern and muscle signals collected by sEMG and accelerometers were analyzed and statistical analyses were applied. Results The accelerometry allowed gait phase identification (stance and swing), and sEMG provided information about muscle pattern variations, which were detected in vastus medialis (onset and offset; p = 0.022) and biceps femoris (offset; p = 0.025). Additionally, comparisons between free and walker-assisted gaits showed significant reduction in speed (from 0.45 to 0.30 m/s; p = 0.021) and longer stance phase (from 54.75 to 60.34%; p = 0.008). Conclusions Variations in muscle patterns were detected in vastus medialis and biceps femoris during the experiments, besides user speed reduction and longer stance phase when the walker-assisted gait is compared with the free gait.

3.
Res. Biomed. Eng. (Online) ; 32(2): 161-175, Apr.-June 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-829473

RESUMO

Abstract Introduction Autism Spectrum Disorder is a set of developmental disorders that imply in poor social skills, lack of interest in activities and interaction with people. Treatments rely on teaching social skills and in such therapies robotics may offer aid. This work is a pilot study, which aims to show the development and usage of a ludic mobile robot for stimulating social skills in ASD children. Methods A mobile robot with a special costume and a monitor to display multimedia contents was designed to interact with ASD children. A mediator controls the robot’s movements in a room prepared for interactive sessions. Sessions are recorded to assess the following social skills: eye gazing, touching the robot and imitating the mediator. The interaction is evaluated using the Goal Attainment Scale and Likert scale. Ten children were evaluated (50% with ASD), using as inclusion criteria children with age 7-8, without use of medication, and without tendency to aggression or stereotyped movements. Results It was observed that the ASD group touched the robot about twice more in average than the control group (CG). They also looked away and imitated the mediator in a quite similar way as the CG, and showed extra social skills (verbal and non-verbal communication). These results are considered an advance in terms of improvement of social skills in ASD children. Conclusions Our studies indicate that the robot stimulated social skills in 4/5 of the ASD children, which shows that its concepts are useful to improve socialization and quality of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...