Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36138741

RESUMO

Background: Hepatitis C virus (HCV) therapy lowers risk of hepatocellular carcinoma (HCC). Little is known about factors driving/preceding HCC in treated persons. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) regulate host response and pathogenesis of disease. We investigated plasma levels of these RNAs and select serum markers before, during, and after HCV therapy, preceding HCC. Methods: Of 187 DAA treated HCV patients where therapy oriented longitudinal sampling was performed at a time without HCC diagnosis, 9 were subsequently diagnosed with HCC within 2 years of therapy. They were matched with 7 patients not diagnosed with HCC over the same time period. RNASeq was performed on plasma, and serum was assessed for biomarkers of inflammation by ELISA. Results: HCC diagnosis was 19 months (6-28) after therapy start in the HCC group. 73 and 63 miRs were differentially expressed at baseline (before DAA therapy) and 12 weeks after DAA therapy comparing HCC and non-HCC groups. Several lncRNA- showed differential expression as well. Several miRNA suppressors of cancer-related pathways, lncRNA- and mRNA-derived stabilized short RNAs were consistently absent in the plasma of patients who developed HCC. Serum IP10, and MCP-1 level was higher in the HCC group 12 weeks after therapy, and distinct miRNAs correlated with IP10 and MCP-1. Finally, in a focused analysis of 8 miRNAs best associated with HCC we observed expression of mi576 and mi-5189 correlation with expression of a select group of PBMC mRNA. Conclusions: These results are consistent with complex interplay between RNA-mediated host immune regulation and cancer suppression, strikingly skewed 12 weeks following therapy, prior to HCC diagnosis.

2.
PLoS Pathog ; 18(7): e1010110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797416

RESUMO

Human immune deficiency virus (HIV) infection in the brain leads to chronic neuroinflammation due to the production of pro-inflammatory cytokines, which in turn promotes HIV transcription in infected microglial cells. However, powerful counteracting silencing mechanisms in microglial cells result in the rapid shutdown of HIV expression after viral reactivation to limit neuronal damage. Here we investigated whether the Nerve Growth Factor IB-like nuclear receptor Nurr1 (NR4A2), which is a repressor of inflammation in the brain, acts directly to restrict HIV expression. HIV silencing following activation by TNF-α, or a variety of toll-like receptor (TLR) agonists, in both immortalized human microglial cells (hµglia) and induced pluripotent stem cells (iPSC)-derived human microglial cells (iMG) was enhanced by Nurr1 agonists. Similarly, overexpression of Nurr1 led to viral suppression, while conversely, knock down (KD) of endogenous Nurr1 blocked HIV silencing. The effect of Nurr1 on HIV silencing is direct: Nurr1 binds directly to the specific consensus binding sites in the U3 region of the HIV LTR and mutation of the Nurr1 DNA binding domain blocked its ability to suppress HIV-1 transcription. Chromatin immunoprecipitation (ChIP) assays also showed that after Nurr1 binding to the LTR, the CoREST/HDAC1/G9a/EZH2 transcription repressor complex is recruited to the HIV provirus. Finally, transcriptomic studies demonstrated that in addition to repressing HIV transcription, Nurr1 also downregulated numerous cellular genes involved in inflammation, cell cycle, and metabolism, further promoting HIV latency and microglial homoeostasis. Nurr1 therefore plays a pivotal role in modulating the cycles of proviral reactivation by potentiating the subsequent proviral transcriptional shutdown. These data highlight the therapeutic potential of Nurr1 agonists for inducing HIV silencing and microglial homeostasis and ultimately for the amelioration of the neuroinflammation associated with HIV-associated neurocognitive disorders (HAND).


Assuntos
Infecções por HIV , HIV-1 , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Humanos , Inflamação/metabolismo , Microglia/metabolismo , Microglia/virologia , Fatores de Crescimento Neural/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Provírus
4.
Mol Cell ; 81(20): 4191-4208.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686314

RESUMO

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.


Assuntos
Proliferação de Células , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Pressão Osmótica , Biossíntese de Proteínas , Ribossomos/metabolismo , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Animais , Códon de Iniciação , Fibroblastos/patologia , Células HEK293 , Humanos , Cinética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Ribossomos/genética , Transdução de Sinais
5.
Mol Cancer Res ; 19(12): 2068-2080, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34497119

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, with its aggressive phenotype being attributed to chemotherapy resistance, metastatic dissemination, and rapid disease recurrence. Breast cancer stem cells (BCSC) are significant contributors to tumor initiation, as well as to the acquisition of aggressive tumorigenic phenotypes, namely due to their ability to self-replicate and to produce heterogeneous differentiated tumor cells. To elucidate the underlying mechanisms that drive BCSC tumorigenicity in TNBC, we identified the long noncoding RNA (lncRNA) B MP/ O P- R esponsive G ene (BORG) as an enhancer of BCSC phenotypes. Indeed, we found BORG expression to: (i) correlate with stem cell markers Nanog, Aldh1a3, and Itga6 (α6 integrin/CD49f); (ii) enhance stem cell phenotypes in murine and human TNBC cells, and (iii) promote TNBC tumor initiation in mice. Mechanistically, BORG promoted BCSC phenotypes through its ability to interact physically with the E3 SUMO ligase TRIM28. Moreover, TRIM28 binding was observed in the promoter region of Itga6, whose genetic inactivation prevented BORG:TRIM28 complexes from: (i) inducing BCSC self-renewal and expansion in vitro, and (ii) eliciting BCSC metastatic outgrowth in the lungs of mice. Collectively, these findings implicate BORG:TRIM28 complexes as novel drivers of BCSC phenotypes in developing and progressing TNBCs. IMPLICATIONS: This work establishes the lncRNA BORG as a driver of BCSC phenotypes and the aggressive behaviors of TNBCs, events critically dependent upon the formation of BORG:TRIM28 complexes and expression of α6 integrin.


Assuntos
Integrina alfa6/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Animais , Proliferação de Células , Progressão da Doença , Humanos , Camundongos , Metástase Neoplásica , RNA Longo não Codificante/genética
6.
PLoS Pathog ; 17(9): e1009581, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529720

RESUMO

The switch between HIV latency and productive transcription is regulated by an auto-feedback mechanism initiated by the viral trans-activator Tat, which functions to recruit the host transcription elongation factor P-TEFb to proviral HIV. A heterodimeric complex of CDK9 and one of three cyclin T subunits, P-TEFb is expressed at vanishingly low levels in resting memory CD4+ T cells and cellular mechanisms controlling its availability are central to regulation of the emergence of HIV from latency. Using a well-characterized primary T-cell model of HIV latency alongside healthy donor memory CD4+ T cells, we characterized specific T-cell receptor (TCR) signaling pathways that regulate the generation of transcriptionally active P-TEFb, defined as the coordinate expression of cyclin T1 and phospho-Ser175 CDK9. Protein kinase C (PKC) agonists, such as ingenol and prostratin, stimulated active P-TEFb expression and reactivated latent HIV with minimal cytotoxicity, even in the absence of intracellular calcium mobilization with an ionophore. Unexpectedly, inhibition-based experiments demonstrated that PKC agonists and TCR-mobilized diacylglycerol signal through MAP kinases ERK1/2 rather than through PKC to effect the reactivation of both P-TEFb and latent HIV. Single-cell and bulk RNA-seq analyses revealed that of the four known isoforms of the Ras guanine nucleotide exchange factor RasGRP, RasGRP1 is by far the predominantly expressed diacylglycerol-dependent isoform in CD4+ T cells. RasGRP1 should therefore mediate the activation of ERK1/2 via Ras-Raf signaling upon TCR co-stimulation or PKC agonist challenge. Combined inhibition of the PI3K-mTORC2-AKT-mTORC1 pathway and the ERK1/2 activator MEK prior to TCR co-stimulation abrogated active P-TEFb expression and substantially suppressed latent HIV reactivation. Therefore, contrary to prevailing models, the coordinate reactivation of P-TEFb and latent HIV in primary T cells following either TCR co-stimulation or PKC agonist challenge is independent of PKC but rather involves two complementary signaling arms of the TCR cascade, namely, RasGRP1-Ras-Raf-MEK-ERK1/2 and PI3K-mTORC2-AKT-mTORC1.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , HIV/fisiologia , Fator B de Elongação Transcricional Positiva/metabolismo , Proteína Quinase C/metabolismo , Latência Viral/fisiologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Transdução de Sinais/fisiologia , Ativação Viral/fisiologia
7.
Arthritis Rheumatol ; 73(1): 143-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798283

RESUMO

OBJECTIVE: To assess the safety and efficacy of RSLV-132, an RNase Fc fusion protein, in a phase II randomized, double-blind, placebo-controlled clinical trial in patients with primary Sjögren's syndrome (SS). METHODS: Thirty patients with primary SS were randomized to receive treatment with RSLV-132 or placebo intravenously once per week for 2 weeks, and then every 2 weeks for 12 weeks. Eight patients received placebo and 20 patients received RSLV-132 at a dose of 10 mg/kg. Clinical efficacy measures included the European League Against Rheumatism (EULAR) Sjögren's Syndrome Disease Activity Index, EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI), Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), Profile of Fatigue (ProF), and the Digit Symbol Substitution Test (DSST). RESULTS: Patients randomized to receive RSLV-132 experienced clinically meaningful improvements in the ESSPRI score (P = 0.27), FACIT-F score (P = 0.05), ProF score (P = 0.07), and DSST (P = 0.02) from baseline to day 99, whereas patients who received placebo showed no changes in any of these clinical efficacy measures. This improvement was significantly correlated with increased expression of selected interferon-inducible genes (Pearson's correlations, each P < 0.05). CONCLUSION: Administration of RSLV-132 improved severe fatigue, as determined by 4 independent patient-reported measures of fatigue, in patients with primary SS.


Assuntos
Fadiga/fisiopatologia , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Ribonucleases/uso terapêutico , Síndrome de Sjogren/tratamento farmacológico , Adulto , Idoso , Método Duplo-Cego , Feminino , Expressão Gênica , Humanos , Interferons/genética , Interferons/imunologia , Fadiga Mental/fisiopatologia , Pessoa de Meia-Idade , Medidas de Resultados Relatados pelo Paciente , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/fisiopatologia , Resultado do Tratamento
8.
Am J Physiol Cell Physiol ; 320(3): C415-C427, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296288

RESUMO

Genome-wide analyses in the last decade have uncovered the presence of a large number of long non-protein-coding transcripts that show highly tissue- and state-specific expression patterns. High-throughput sequencing analyses in diverse subsets of immune cells have revealed a complex and dynamic expression pattern for these long noncoding RNAs (lncRNAs) that correlate with the functional states of immune cells. Although the vast majority of lncRNAs expressed in immune cells remain unstudied, functional studies performed on a small subset have indicated that their state-specific expressions pattern frequently has a regulatory impact on the function of immune cells. In vivo and in vitro studies have pointed to the involvement of lncRNAs in a wide variety of cellular processes, including both the innate and adaptive immune response through mechanisms ranging from epigenetic and transcriptional regulation to sequestration of functional molecules in subcellular compartments. This review will focus mainly on the role of lncRNAs in CD4+ and CD8+ T cells, which play pivotal roles in adaptive immunity. Recent studies have pointed to key physiological functions for lncRNAs during several developmental and functional stages of the life cycle of lymphocytes. Although lncRNAs play important physiological roles in lymphocytic response to antigenic stimulation, differentiation into effector cells, and secretion of cytokines, their dysregulated expression can promote or sustain pathological states such as autoimmunity, chronic inflammation, cancer, and viremia. This, together with their highly cell type-specific expression patterns, makes lncRNAs ideal therapeutic targets and underscores the need for additional studies into the role of these understudied transcripts in adaptive immune response.


Assuntos
Imunidade/imunologia , RNA Longo não Codificante/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Humanos
9.
Immunohorizons ; 4(7): 420-429, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32675085

RESUMO

Opioid peptides are released at sites of injury, and their cognate G protein-coupled opioid receptors (OR) are expressed on immune cells. Exposure of human circulating CD8+ T cells to selective OR agonists differentially regulates thousands of genes. Gene set enrichment analysis reveals that µ-OR more strongly regulates cellular processes than δ-OR. In TCR naive T cells, triggering µ-OR exhibits stimulatory and inhibitory patterns, yet when administered prior to TCR cross-linking, a µ-OR agonist inhibits activation. µ-OR, but not δ-OR, signaling is linked to upregulation of lipid, cholesterol, and steroid hormone biosynthesis, suggesting lipid regulation is a mechanism for immune suppression. Lipid rafts are cholesterol-rich, liquid-ordered membrane domains that function as a nexus for the initiation of signal transduction from surface receptors, including TCR and µ-OR. We therefore propose that µ-OR-specific inhibition of TCR responses in human CD8+ T cells may be mediated through alterations in lipid metabolism and membrane structure.


Assuntos
Analgésicos Opioides/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Receptores Opioides mu/imunologia , Transcriptoma/genética , Linfócitos T CD8-Positivos/imunologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores Opioides mu/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-31435529

RESUMO

Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the molecular mechanisms underpinning the dissemination of primary breast tumor cells and their ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), which interact both directly and indirectly with key components of gene regulatory networks to alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BORG whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via survival and viability pathways, as well as decreased activation of cell death pathways. As such, BORG expression acts as a (i) marker capable of predicting which breast cancer patients are predisposed to develop secondary metastatic lesions, and (ii) unique therapeutic target to maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that contribute to the pathophysiological activities of BORG during its regulation of breast cancer metastasis, chemoresistance, and disease recurrence.

11.
mBio ; 10(2)2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914509

RESUMO

The latent HIV reservoir is generated following HIV infection of activated effector CD4 T cells, which then transition to a memory phenotype. Here, we describe an ex vivo method, called QUECEL (quiescent effector cell latency), that mimics this process efficiently and allows production of large numbers of latently infected CD4+ T cells. Naïve CD4+ T cells were polarized into the four major T cell subsets (Th1, Th2, Th17, and Treg) and subsequently infected with a single-round reporter virus which expressed GFP/CD8a. The infected cells were purified and coerced into quiescence using a defined cocktail of cytokines, including tumor growth factor beta, interleukin-10 (IL-10), and IL-8, producing a homogeneous population of latently infected cells. Flow cytometry and transcriptome sequencing (RNA-Seq) demonstrated that the cells maintained the correct polarization phenotypes and had withdrawn from the cell cycle. Key pathways and gene sets enriched during transition from quiescence to reactivation include E2F targets, G2M checkpoint, estrogen response late gene expression, and c-myc targets. Reactivation of HIV by latency-reversing agents (LRAs) closely mimics RNA induction profiles seen in cells from well-suppressed HIV patient samples using the envelope detection of in vitro transcription sequencing (EDITS) assay. Since homogeneous populations of latently infected cells can be recovered, the QUECEL model has an excellent signal-to-noise ratio and has been extremely consistent and reproducible in numerous experiments performed during the last 4 years. The ease, efficiency, and accuracy of the mimicking of physiological conditions make the QUECEL model a robust and reproducible tool to study the molecular mechanisms underlying HIV latency.IMPORTANCE Current primary cell models for HIV latency correlate poorly with the reactivation behavior of patient cells. We have developed a new model, called QUECEL, which generates a large and homogenous population of latently infected CD4+ memory cells. By purifying HIV-infected cells and inducing cell quiescence with a defined cocktail of cytokines, we have eliminated the largest problems with previous primary cell models of HIV latency: variable infection levels, ill-defined polarization states, and inefficient shutdown of cellular transcription. Latency reversal in the QUECEL model by a wide range of agents correlates strongly with RNA induction in patient samples. This scalable and highly reproducible model of HIV latency will permit detailed analysis of cellular mechanisms controlling HIV latency and reactivation.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV/fisiologia , Subpopulações de Linfócitos T/virologia , Ativação Viral , Latência Viral , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Modelos Biológicos
12.
Oncogene ; 38(12): 2020-2041, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30467380

RESUMO

Disseminated breast cancer cells employ adaptive molecular responses following cytotoxic therapeutic insult which promotes their survival and subsequent outgrowth. Here we demonstrate that expression of the pro-metastatic lncRNA BORG (BMP/OP-Responsive Gene) is greatly induced within triple-negative breast cancer (TNBC) cells subjected to environmental and chemotherapeutic stresses commonly faced by TNBC cells throughout the metastatic cascade. This stress-mediated induction of BORG expression fosters the survival of TNBC cells and renders them resistant to the cytotoxic effects of doxorubicin both in vitro and in vivo. The chemoresistant traits of BORG depend upon its robust activation of the NF-κB signaling axis via a novel BORG-mediated feed-forward signaling loop, and via its ability to bind and activate RPA1. Indeed, genetic and pharmacologic inhibition of NF-κB signaling or the DNA-binding activity of RPA1 abrogates the pro-survival features of BORG and renders BORG-expressing TNBCs sensitive to doxorubicin-induced cytotoxicity. These findings suggest that therapeutic targeting of BORG or its downstream molecular effectors may provide a novel means to alleviate TNBC recurrence.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , NF-kappa B/metabolismo , Metástase Neoplásica , Proteína de Replicação A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Proc Natl Acad Sci U S A ; 115(33): E7795-E7804, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061382

RESUMO

Unbiased shRNA library screens revealed that the estrogen receptor-1 (ESR-1) is a key factor regulating HIV-1 latency. In both Jurkat T cells and a Th17 primary cell model for HIV-1 latency, selective estrogen receptor modulators (SERMs, i.e., fulvestrant, raloxifene, and tamoxifen) are weak proviral activators and sensitize cells to latency-reversing agents (LRAs) including low doses of TNF-α (an NF-κB inducer), the histone deacetylase inhibitor vorinostat (soruberoylanilide hydroxamic acid, SAHA), and IL-15. To probe the physiologic relevance of these observations, leukapheresis samples from a cohort of 12 well-matched reproductive-age women and men on fully suppressive antiretroviral therapy were evaluated by an assay measuring the production of spliced envelope (env) mRNA (the EDITS assay) by next-generation sequencing. The cells were activated by T cell receptor (TCR) stimulation, IL-15, or SAHA in the presence of either ß-estradiol or an SERM. ß-Estradiol potently inhibited TCR activation of HIV-1 transcription, while SERMs enhanced the activity of most LRAs. Although both sexes responded to SERMs and ß-estradiol, females showed much higher levels of inhibition in response to the hormone and higher reactivity in response to ESR-1 modulators than males. Importantly, the total inducible RNA reservoir, as measured by the EDITS assay, was significantly smaller in the women than in the men. We conclude that concurrent exposure to estrogen is likely to limit the efficacy of viral emergence from latency and that ESR-1 is a pharmacologically attractive target that can be exploited in the design of therapeutic strategies for latency reversal.


Assuntos
Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/agonistas , HIV-1/fisiologia , Caracteres Sexuais , Transcrição Gênica/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Adulto , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células Jurkat , Masculino , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia
14.
Pathog Immun ; 3(1): 126-148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135954

RESUMO

The interferon (IFN) response is a critical and ubiquitous component of the innate immune response to pathogens. Detailed studies in the last decades have elucidated the function of a large number of proteins that mediate the complex signaling pathways and gene expression programs involved in the interferon response. The recent discovery of the long non-coding RNAs (lncRNAs) as a new category of cellular effectors has led to studies aiming to understand the role of these transcripts in the IFN response. Several high throughput studies have shown that a large number of lncRNAs are differentially expressed following IFN stimulation and/or viral infections. In-depth study of a very small fraction of the identified lncRNAs has revealed critical roles for this class of transcripts in the regulation of multiple steps of the IFN response, and pointed to the presence of an extensive RNA-mediated regulatory network during the antiviral response. As the vast majority of the identified potential regulatory lncRNAs remain unstudied, it is highly likely that future studies will reveal a completely new perspective on the regulation of the IFN response, with lncRNA- and protein-mediated regulatory networks coordinating the duration, magnitude, and character of this aspect of the innate immune response. In addition to providing a more complete picture of the IFN response, these studies will likely identify new therapeutic targets that in the long term may impact the therapeutic options available against microbial infections and diseases of the immune system.

15.
Front Microbiol ; 9: 181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503633

RESUMO

The interferon (IFN) response is a critical component of the innate immunity antiviral pathways in mammalians. IFN signaling results in increased expression of cellular factors that block key steps in the viral replication cycle. Many IFN-induced antiviral factors act through decreasing viral entry, replication, transcription, translation, packaging and release. However, these effects are also deleterious for the viability of the cell, which necessitates a tight control over the magnitude and duration of the IFN response. This is partially achieved through the IFN-mediated activation of negative regulatory factors that help in termination of the IFN response and return to a normal homeostatic state. Such built-in negative regulatory mechanisms are frequently hijacked by viruses such as the Hepatitis C virus (HCV) to increase viral replication and productive infections. We and others have shown that long non-coding RNAs (lncRNAs) play prominent roles in regulation of the IFN response. Activation of the IFN cascade alters the expression of a large number of lncRNAs, many of which are directly induced by the JAK/STAT pathway and thus, resemble the well-studied protein-coding interferon-stimulated genes (ISGs). While only a handful of IFN- and virally induced lncRNAs have been characterized, recent studies have identified several lncRNAs that act as positive or negative regulators of expression of ISGs during the IFN response. A number of such regulatory lncRNAs have multiple ISG targets, while others act on a single neighboring ISG. Another group of studied lncRNAs act further upstream and regulate the expression of IFN genes or factors that sense the presence of viral genome or replication products. The large number of unstudied IFN- and virally induced lncRNAs makes it highly likely that future studies will reveal a much greater share for this class of transcripts in regulation of the antiviral response. In addition to their physiological roles, the expression of such lncRNAs is frequently modulated by virally encoded factors to interfere with the antiviral response and promote viral replication, thus making them ideal targets for therapeutic intervention.

16.
Sci Rep ; 7(1): 12698, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983112

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as potent regulators of breast cancer development and progression, including the metastatic spread of disease. Through in silico and biological analyses, we identified a novel lncRNA, BMP/OP-Responsive Gene (BORG), whose expression directly correlates with aggressive breast cancer phenotypes, as well as with metastatic competence and disease recurrence in multiple clinical cohorts. Mechanistically, BORG elicits the metastatic outgrowth of latent breast cancer cells by promoting the localization and transcriptional repressive activity of TRIM28, which binds BORG and induces substantial alterations in carcinoma proliferation and survival. Moreover, inhibiting BORG expression in metastatic breast cancer cells impedes their metastatic colonization of the lungs of mice, implying that BORG acts as a novel driver of the genetic and epigenetic alterations that underlie the acquisition of metastatic and recurrent phenotypes by breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Recidiva Local de Neoplasia/genética , RNA Longo não Codificante/genética , Proteína 28 com Motivo Tripartido/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Neurovirol ; 23(1): 47-66, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27873219

RESUMO

The major reservoirs for HIV in the CNS are in the microglia, perivascular macrophages, and to a lesser extent, astrocytes. To study the molecular events controlling HIV expression in the microglia, we developed a reliable and robust method to immortalize microglial cells from primary glia from fresh CNS tissues and commercially available frozen glial cells. Primary human cells, including cells obtained from adult brain tissue, were transformed with lentiviral vectors expressing SV40 T antigen or a combination of SVR40 T antigen and hTERT. The immortalized cells have microglia-like morphology and express key microglial surface markers including CD11b, TGFßR, and P2RY12. Importantly, these cells were confirmed to be of human origin by sequencing. The RNA expression profiles identified by RNA-seq are also characteristic of microglial cells. Furthermore, the cells demonstrate the expected migratory and phagocytic activity, and the capacity to mount an inflammatory response characteristic of primary microglia. The immortalization method has also been successfully applied to a wide range of microglia from other species (macaque, rat, and mouse). To investigate different aspects of HIV molecular regulation in CNS, the cells have been superinfected with HIV reporter viruses and latently infected clones have been selected that reactive HIV in response to inflammatory signals. The cell lines we have developed and rigorously characterized will provide an invaluable resource for the study of HIV infection in microglial cells as well as studies of microglial cell function.


Assuntos
Antígenos Virais de Tumores/genética , Efeito Fundador , Microglia/patologia , Transformação Genética , Adulto , Animais , Antígenos Virais de Tumores/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Movimento Celular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Macaca , Camundongos , Microglia/metabolismo , Microglia/virologia , Fagocitose , Cultura Primária de Células , Ratos , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
18.
Virus Res ; 212: 127-36, 2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26474526

RESUMO

The interferon (IFN) response is a critical arm of the innate immune response and a major host defense mechanism against viral infections. Following microbial encounter, a series of signaling events lead to transcriptional activation of the IFN genes, which in turn leads to significant changes in the cellular transcriptome by altering the expression of hundreds of target genes. Emerging evidence suggests that long non-coding RNAs (lncRNAs) constitute a major subgroup of the IFN target genes, and further, that the IFN response is subject to regulation by a large number of host- and pathogen-derived lncRNAs. While the vast majority of lncRNAs with potential roles in the IFN response remain unstudied, analysis of a very small subset provides a glimpse of the regulatory impact of this class of RNAs on IFN response.


Assuntos
Interferons/imunologia , RNA Longo não Codificante/imunologia , Viroses/imunologia , Replicação Viral , Animais , Humanos , Interferons/genética , RNA Longo não Codificante/genética , Viroses/genética , Viroses/virologia , Vírus/genética , Vírus/imunologia
19.
Curr Top Microbiol Immunol ; 394: 203-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26658944

RESUMO

All living organisms sense and respond to harmful changes in their intracellular and extracellular environment through complex signaling pathways that lead to changes in gene expression and cellular function in order to maintain homeostasis. Long non-coding RNAs (lncRNAs), a large and heterogeneous group of functional RNAs, play important roles in cellular response to stressful conditions. lncRNAs constitute a significant fraction of the genes differentially expressed in response to diverse stressful stimuli and, once induced, contribute to the regulation of downstream cellular processes, including feedback regulation of key stress response proteins. While many lncRNAs seem to be induced in response to a specific stress, there is significant overlap between lncRNAs induced in response to different stressful stimuli. In addition to stress-induced RNAs, several constitutively expressed lncRNAs also exert a strong regulatory impact on the stress response. Although our understanding of the contribution of lncRNAs to the cellular stress response is still highly rudimentary, the existing data point to the presence of a complex network of lncRNAs, miRNAs, and proteins in regulation of the cellular response to stress.


Assuntos
RNA Longo não Codificante/fisiologia , Estresse Fisiológico/fisiologia , Hipóxia Celular , Dano ao DNA , Epigênese Genética , Resposta ao Choque Térmico , Humanos , Estresse Oxidativo
20.
Nucleic Acids Res ; 42(16): 10668-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25122750

RESUMO

Long non-coding RNAs (lncRNAs) play critical roles in diverse cellular processes; however, their involvement in many critical aspects of the immune response including the interferon (IFN) response remains poorly understood. To address this gap, we compared the global gene expression pattern of primary human hepatocytes before and at three time points after treatment with IFN-α. Among ∼ 200 IFN-induced lncRNAs, one transcript showed ∼ 100-fold induction. This RNA, which we named lncRNA-CMPK2, was a spliced, polyadenylated nuclear transcript that was induced by IFN in diverse cell types from human and mouse. Similar to protein-coding IFN-stimulated genes (ISGs), its induction was dependent on JAK-STAT signaling. Intriguingly, knockdown of lncRNA-CMPK2 resulted in a marked reduction in HCV replication in IFN-stimulated hepatocytes, suggesting that it could affect the antiviral role of IFN. We could show that lncRNA-CMPK2 knockdown resulted in upregulation of several protein-coding antiviral ISGs. The observed upregulation was caused by an increase in both basal and IFN-stimulated transcription, consistent with loss of transcriptional inhibition in knockdown cells. These results indicate that the IFN response involves a lncRNA-mediated negative regulatory mechanism. lncRNA-CMPK2 was strongly upregulated in a subset of HCV-infected human livers, suggesting a role in modulation of the IFN response in vivo.


Assuntos
Interferon-alfa/farmacologia , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Hepatite C/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Interferon gama/farmacologia , Janus Quinases/metabolismo , Fígado/metabolismo , Camundongos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Fatores de Transcrição STAT/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...