Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241856

RESUMO

Non-covalent interactions have been extensively used to fabricate nanoscale architectures in supramolecular chemistry. However, the biomimetic self-assembly of diverse nanostructures in aqueous solution with reversibility induced by different important biomolecules remains a challenge. Here, we report the synthesis and aqueous self-assembly of two chiral cationic porphyrins substituted with different types of side chains (branched or linear). Helical H-aggregates are induced by pyrophosphate (PPi) as indicated by circular dichroism (CD) measurement, while J-aggregates are formed with adenosine triphosphate (ATP) for the two porphyrins. By modifying the peripheral side chains from linear to a branched structure, more pronounced H- or J-type aggregation was promoted through the interactions between cationic porphyrins and the biological phosphate ions. Moreover, the phosphate-induced self-assembly of the cationic porphyrins is reversible in the presence of the enzyme alkaline phosphatase (ALP) and repeated addition of phosphates.


Assuntos
Trifosfato de Adenosina , Difosfatos , Nanoestruturas , Porfirinas , Porfirinas/síntese química , Cátions/síntese química , Difosfatos/química , Trifosfato de Adenosina/química , Fosfatase Alcalina/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Nanoestruturas/química , Eletricidade Estática , Água/química
2.
Nano Lett ; 23(14): 6308-6314, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37074355

RESUMO

MXenes represent a novel class of 2D materials with unique properties and have great potential for diverse applications in sensing and electronics; however, their directed assembly at interfaces has not yet been achieved. Herein, the plasmonic heating of MXenes was exploited to achieve the controlled deposition of MXene assemblies via a laser-directed microbubble. The influence of various factors such as solvent composition, substrate surface chemistry, MXene concentration, and laser fluence was investigated, establishing the optimal conditions for rapid patterning with good fidelity. Printed MXene assemblies showed good electrical conductivity and plasmonic sensing capabilities and were able to meet or exceed the state of the art without additional postprocessing steps. This represents the first study of a directed approach for microfabrication using MXenes and lays the foundation for future work in optically directed assembly of MXenes and MXene-based nanocomposites at interfaces toward sensors and devices.

3.
J Colloid Interface Sci ; 629(Pt B): 300-306, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155925

RESUMO

The control over intermolecular interactions between chromophores at nanomaterial interfaces is important for sensing and light-harvesting applications. To that aim, inorganic nanoparticles with anisotropic shape and surface chemistry can serve as useful supports for organic modification. Herein, novel asymmetric perylene diimides with aspartic acid and oleyl terminal groups were grafted to the edges of the layered silicate clay Laponite, a water-dispersible discoidal nanoparticle. The photophysical properties and solvent-dependent self-assembly of the nanoclay-grafted perylenes were investigated, revealing that the polarity of the terminating ligand dictates the aggregation behavior in aqueous solution, where increased water content generally led to the formation of perylene H-aggregates. The anionic basal surface of the nanoclay provided a binding site for a cationic fluorophore, leading to energy transfer from the face-bound donor to the edge-bound perylene acceptor. This study encourages further research on the use of functional ligands for the formation of organic-inorganic hybrids, particularly where inorganic template particles with specific surface chemistry can be exploited to study intermolecular interactions. Overall, these findings should advance further design and implementation of novel semiconducting ligands towards inorganic-organic hybrids, with potential applications in sensing and energy harvesting.

4.
J Phys Chem A ; 125(18): 3863-3873, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33945279

RESUMO

This paper reports a photophysical investigation of a series of phenylene ethynylene oligomers (OPE) that are end-substituted with a 1,8-naphthalene imide (NI) acceptor. The NI acceptor is attached to the terminus of the OPEs via an ethynylene (-C≡C-) unit that is linked at the 4-position of the NI unit. A series of three oligomers is investigated, OPE1-NI, OPE3-NI, and OPE5-NI, which contain 1, 3, and 5 phenylene ethynylene repeat units, respectively. The properties of the OPEn-NI series are compared to a corresponding set of unsubstituted OPEs, OPE3 and OPE5, which contain 3 and 5 phenylene ethynylene repeats, respectively. The photophysics of all the compounds are interrogated using a variety of techniques including steady-state absorption, steady-state fluorescence, two-photon absorption, time-resolved fluorescence, and transient absorption spectroscopy on femtosecond-to-microsecond time scales. The effect of solvent polarity on the properties of the oligomers is examined. The results show that the NI-substituted oligomers feature a lowest charge transfer (CT) excited state, where the OPE segment acts as the donor and the NI moiety is the acceptor (OPEn•+-NI•-). The absorption spectra in one-photon and two-photon exhibit a clear manifold of absorption features that can be attributed to direct CT absorption. In moderately polar solvents, the emission is dominated by a broad, solvatochromic band that is due to radiative decay from the CT excited state. Ultrafast transient absorption provides evidence for initial population of a locally excited state (LE) which in moderately polar solvents rapidly (∼1 ps) evolves into the CT excited state. The structure, spectroscopy, and dynamics of the CT state are qualitatively similar for OPE3-NI and OPE5-NI, suggesting that delocalization in the OPE segment does not have much effect on the structure or energetics of the CT excited state.

5.
Inorg Chem ; 60(14): 10065-10074, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33908257

RESUMO

This study probes femto- and picosecond excited-state dynamics of a series of N-heterocyclic carbene (NHC) ligand-containing platinum(II) complexes of the type trans-(NHC)2PtII(CC-Ar)2, where CC-Ar is an arylacetylide. By using femtosecond transient absorption spectroscopy, two dynamic processes are observed: an ultrafast singlet → triplet intersystem crossing (<0.3 ps), followed by geometric/electronic relaxation that takes place on a 2-10 ps time scale. The geometric/electronic relaxation is attributed to ligand torsional modes, mainly arising from twisting of the aryl units relative to the square-planar PtL4 unit. The dynamics of this relaxation process depend somewhat on steric constraints induced by substituent groups attached to the (benz)imidazole and phenyl ligands. The geometric relaxation dynamics slow with increasing solvent viscosity. The experimental studies also reveal that the different conformers can be photoselected by varying the excitation at different near-UV wavelengths. To corroborate the experimental findings, density functional theory calculations were conducted to probe the effects of geometry and steric hindrance on the ground-state energy surface. The calculations suggest that the barrier for torsion of the CC-Ar units increases as N-substituents on the NHC ligands increase in the order CH3 < cyclohexyl < n-butyl and as the CC-Ar units are substituted in the 3 and 5 positions with tert-butyl groups.

6.
ACS Appl Mater Interfaces ; 13(4): 5327-5337, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476121

RESUMO

Two new platinum(II) compounds with trans-(NHC)2Pt(C≡C-C≡C-R)2 (where NHC = N-heterocyclic carbene and R = phenyl or trimethylsilyl) architecture exhibit sharp blue-green or saturated deep-blue phosphorescence with high color purity. The photoluminescence of both compounds is dominated by an intense 0-0 band with distinct but weaker vibronic progressions in both tetrahydrofuran (THF) and poly(methyl methacrylate) (PMMA) matrix. The full width at half-maximum (fwhm) of the photoluminescence of trans-(NHC)2Pt(C≡C-C≡C-trimethylsilyl)2 are 10 nm at room temperature and 4 nm at 77 K, while the trans-(NHC)2Pt(C≡C-C≡C-phenyl)2 shows a fwhm of 14 nm at room temperature and 8 nm at 77 K. The Commission International de L'Eclairage (CIE) coordinates of trans-(NHC)2Pt(C≡C-C≡C-phenyl)2 are (0.222, 0.429) in PMMA, and trans-(NHC)2Pt(C≡C-C≡C-trimethylsilyl)2 has a deep-blue CIE of (0.163, 0.077) in PMMA. When doped into PMMA, the phosphorescence quantum yield of the complex with trimethylsilyl-butadiyne ligand increases dramatically to 57% from 0.25% in THF, while the complex with phenyl-butadiyne ligand has similar quantum yields in PMMA (32%) and THF (37%). Organic light-emitting diodes (OLEDs) employing these two complexes as the emitters were successfully fabricated with electroluminescence that closely matches the corresponding photoluminescence. The OLEDs based on trans-(NHC)2Pt(C≡C-C≡C-trimethylsilyl)2 display highly pure deep-blue electroluminescence (fwhm = 12 nm) with CIE coordinates of (0.172, 0.086), approaching the most stringent National Television System Committee (NTSC) coordinates for "pure" blue of (0.14, 0.08).

7.
J Phys Chem Lett ; 11(19): 8292-8296, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32907336

RESUMO

The two-photon absorption properties of anionic poly(phenylene ethynylene)-type conjugated oligo- and polyelectrolytes are studied in molecularly dissolved and aggregated forms in aqueous solution. Several different polyvalent cations are used to induce aggregation. It is found that both materials in the aggregated form exhibit enhanced two-photon excited fluorescence (2PEF) and two-photon cross section (σ2) compared with the molecularly dissolved structures. The 2PEF and σ2 are unaffected by the nature of the polyvalent cation that is used to induce aggregation. The two-photon absorption cross section enhancement arises because of the increase in the difference dipole moment (Δµ) in the aggregates of the conjugated materials, an effect that is attributed to the introduction of charge transfer character into the aggregate excited state.

8.
Biochemistry ; 59(16): 1618-1629, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32283930

RESUMO

The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes b at specific sites in its protein shell. The heme b can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]n} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al. (2018) Biomacromolecules 19, 178-187]. This report describes the X-ray crystal structure of ZnPP-Bfr and the effects of loaded iron on the photophysical properties of the ZnPP. The crystal structure of ZnPP-Bfr shows a unique six-coordinate zinc in the ZnPP with two axial methionine sulfur ligands. Steady state and transient ultraviolet-visible absorption and luminescence spectroscopies show that irradiation with light overlapping the Soret absorption causes oxidation of ZnPP to the cation radical ZnPP•+ only when the ZnPP-Bfr is loaded with [FeO(OH)]n. Femtosecond transient absorption spectroscopy shows that this photooxidation occurs from the singlet excited state (1ZnPP*) on the picosecond time scale and is consistent with two oxidizing populations of Fe3+, which do not appear to involve the ferroxidase center iron. We propose that [FeO(OH)]n clusters at or near the inner surface of the protein shell are responsible for ZnPP photooxidation. Hopping of the photoinjected electrons through the [FeO(OH)]n would effectively cause migration of Fe2+ through the inner cavity to pores where it exits the protein. Reductive iron mobilization is presumed to be a physiological function of Bfrs. The phototriggered Fe3+ reduction could be used to identify the sites of iron mobilization within the Bfr protein shell.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos b/química , Ferritinas/química , Ferro/química , Protoporfirinas/química , Proteínas de Bactérias/efeitos da radiação , Cristalografia por Raios X , Grupo dos Citocromos b/efeitos da radiação , Escherichia coli/química , Ferritinas/efeitos da radiação , Ferro/efeitos da radiação , Luz , Oxirredução , Conformação Proteica , Protoporfirinas/efeitos da radiação
9.
RSC Adv ; 10(10): 5551-5559, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497424

RESUMO

The quest for efficient solar-to-fuel conversion has led to the development of numerous homogeneous and heterogeneous systems for photochemical stimulation of 2H+ + 2e- → H2. Many such systems consist of a photosensitizer, an H2-evolving catalyst (HEC), and sacrificial electron donor often with an electron relay between photosensitizer and HEC. Colloidal platinum remains a popular HEC. We report here a novel, simple, and high yield synthesis of Pt nanoparticles (Pt NPs) associated with human heavy chain ferritin (Hfn). The formation of the Pt NPs capitalizes on Hfn's native catalysis of autoxidation of Fe(ii)(aq) (ferroxidase activity). Fe(ii) reduces Pt(ii) to Pt(0) and the rapid ferroxidase reaction produces FeO(OH), which associates with and stabilizes the incipient Pt NPs. This Pt/Fe-Hfn efficiently catalyzes photosensitized H2 production when combined with Eosin Y (EY) as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor. With white light irradiation turnover numbers of 300H2 per Pt, 250H2 per EY were achieved. A quantum yield of 18% for H2 production was obtained with 550 nm irradiation. The fluorescence emission of EY is quenched by TEOA but not by Pt/Fe-Hfn. We propose that the photosensitized H2 production from aqueous TEOA, EY, Pt/Fe-Hfn solution occurs via a reductive quenching pathway in which both the singlet and triplet excited states of EY are reduced by TEOA to the anion radical, EY-˙, which in turn transfers electrons to the Pt/Fe-Hfn HEC. Hfn is known to be a remarkably versatile scaffold for incorporation and stabilization of noble metal and semiconductor nanoparticles. Since both EY and Hfn are amenable to scale-up, we envision further refinements to and applications of this photosensitized H2-generating system.

10.
J Phys Chem A ; 123(43): 9382-9393, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31589439

RESUMO

A series of cis-platinum(II) acetylide complexes containing two-photon-absorbing chromophores have been synthesized and characterized to explore the effects of stereochemistry on the nonlinear absorption properties. The molecules feature 4-(phenylethynyl)phenylethynylene (PE2), diphenylaminofluorene (DPAF), and benzothiazolylfluorene (BTF) ligands. The photophysical properties were investigated under one- and two-photon conditions and compared to the known trans analogues via UV-visible absorption, photoluminescence, femtosecond and nanosecond transient absorption (TA), nanosecond z-scan, and femtosecond two-photon absorption (2PA). The bent cis complexes exhibit blue shifts in the absorption, emission, femtosecond, and nanosecond TA spectra along with lower molar extinction coefficients and lower phosphorescence yields relative to the trans complexes suggesting less efficient Pt-induced spin-orbit coupling and intersystem crossing in the cis configuration. The cis chromophores are noncentrosymmetric and therefore show dipolar behavior with a pronounced 2PA in the 0-0 transition of the S0 → S1 band, while the trans complexes show quadrupolar behavior with a forbidden 0-0 transition. In the S0 → Sn region, both cis and trans complexes show intense two-photon-absorption bands (up to 3700 GM by the peak cross section for cis-BTF) which contain a significant contribution from the excited state absorption (S1 → Sn). All six complexes exhibit comparable nonlinear absorption response with a significant contribution from triplet-triplet absorption that slightly favors trans complexes but is more strongly dependent upon the structure of the π-conjugated chromophore.

11.
J Phys Chem A ; 123(42): 9069-9078, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31542930

RESUMO

A series of 11 complexes of the type trans-(NHC)2Pt(CC-Ar)2 (where NHC = N-heterocyclic carbene) have been synthesized and their photophysics characterized. The complexes display moderately efficient deep blue to green phosphorescence from a triplet excited state that is localized mainly in the aryl acetylide ligand (CC-Ar). The emission energy varies with the substituent on CC-Ar, with the highest energy emission for Ar = 4-pyridyl. The emission quantum efficiency and lifetime for the series decreases with increasing emission energy (Eem), and the effect is identified as arising from an increase in the nonradiative decay rate (knr) with Eem. Temperature-dependent emission lifetime studies for three complexes give activation energies for the nonradiative decay process ∼1000 cm-1, and the thermally activated decay process is attributed to crossing to a nonemissive metal-centered (d-d) excited state. At a low temperature, two different emission progressions are observed. Density functional theory calculations suggest that the triplet energy varies with the torsion of the aryl acetylide rings relative to the plane defined by the PtC4 unit (where C = the carbon atoms bonded to Pt). The multiple emission is ascribed to emission from complexes differing with respect to the aryl acetylide ring torsion. Ultrafast transient absorption spectroscopy reveals a fast relaxation (∼5 ps) that may also be due to aryl acetylide ring torsional relaxation in the triplet excited state.

12.
J Am Chem Soc ; 141(32): 12610-12618, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31329440

RESUMO

Self-assembly of small molecules through noncovalent interactions into nanoscale architectures has been extensively studied in supramolecular chemistry. However, it is still challenging to develop a biologically inspired self-assembly system that functions in water with complex structure and dynamics by analogy with those found in nature. Here, we report a new water-soluble cationic porphyrin that undergoes adenosine triphosphate (ATP)-templated self-assembly into right-handed double-helical supramolecular structures. Direct observation of the porphyrin-ATP assembly by transmission electron microscopy has been accomplished. The assemblies consist of superhelical fibers with length greater than 1 µm and width ∼46 nm. The chiral superhelical fibers show reversible disassembly to monomers upon hydrolysis of ATP catalyzed by alkaline phosphatase (ALP), and the nanofibers can be re-formed with subsequent addition of ATP. Moreover, transient self-assembly of a chiral double helix is formed when ALP is present to consume ATP.


Assuntos
Trifosfato de Adenosina/química , Substâncias Macromoleculares/química , Nanofibras/química , Porfirinas/química , Fosfatase Alcalina/química , Hidrólise , Simulação de Dinâmica Molecular
13.
Langmuir ; 33(4): 891-899, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28064495

RESUMO

In the present study, we have attempted to investigate, for the first time, the photophysical behavior of 1,1'-diethyl-2,4'-cyanine (ICY)/clay mineral hybrids in the solid state. The effects promoted by ICY loading and clay type on the spectroscopic properties were studied by UV-vis diffuse reflectance spectroscopy (DR) and different fluorescence techniques. The hybrids were characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). UV-vis-DR revealed the formation of ICY H-aggregates in Wyoming montmorillonite (SWy-1) and Laponite (Lap); however, J-aggregates were predominant for ICY on Arizona (SAz-1) and Barasym (SYn-1) montmorillonites. The formation of J-aggregates was favored on clays with a high layer charge density (SAz-1 and SYn-1). Increasing ICY loading leads to an increase in H-aggregates, which become predominant in all of the samples. The fluorescence spectra of ICY-Lap and ICY-SYn-1 hybrids showed two emissive bands, and they were assigned to the monomeric and J-aggregate species. The fluorescence lifetime showed consistent and distinct values for the two species. The longer fluorescence lifetime can be assigned to the ICY monomers, while the second component has a short lifetime value and may be attributed to J-aggregate emission species. Moreover, confocal fluorescence micrographs showed two different fluorescent domains; monomers (greenish domain) and J-aggregates (orange domain) can be clearly distinguished. For ICY adsorbed on SWy-1 and SAz-1, the intensities of the fluorescence spectra were very low, and it was not possible to measure the fluorescence lifetimes due to high iron content in these clays, which acts as an efficient quencher of the excited singlet state of the dye molecules. XRD and TGA curves showed that the intercalation of ICY into the interlayer regions of SWy-1, SAz-1, and SYn-1 occurred for high dye concentration only. In the case of Laponite, ICY adsorbs on the external surface of the layer. Our studies indicate that the ICY-clays, in particular, ICY-SYn-1 and ICY-Lap, are promising hybrid materials with interesting optical and photophysical properties.

14.
Carbohydr Polym ; 157: 1548-1556, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987867

RESUMO

Films of three polymers, based on ethyl(hydroxyethyl)cellulose functionalized with protonated perichromic dyes, were used for anion sensing. The polymer functionalized with protonated Brooker's merocyanine acts as a chromogenic/fluorogenic system for the selective detection of cyanide in water. An increase of >28 times was verified for the fluorescence lifetime of the sensing units in the polymer in comparison with protonated Brooker's merocyanine in water. Moreover, an increase in the pKa values was verified for the sensing units in the polymers. Data suggest that the hydrocarbonic polymeric chains provide an adequate microenvironment to protect the sensing unit from bulk water. The other polymer, functionalized with an iminophenol, also showed high selectivity for cyanide (detection limit=9.36×10-6molL-1 and quantification limit=3.12×10-5molL-1). The polymer functionalized with azophenol units is unable for the detection of cyanide, due to the low pKa value verified for its chromogenic units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...