Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11107, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045606

RESUMO

Neonatal hyperbilirubinemia or jaundice is associated with kernicterus, resulting in permanent neurological damage or even death. Conventional phototherapy does not prevent hyperbilirubinemia or eliminate the need for exchange transfusion. Here we investigated the potential of therapeutic bile acids ursodeoxycholic acid (UDCA) and obeticholic acid (OCA, 6-α-ethyl-CDCA), a farnesoid-X-receptor (FXR) agonist, as preventive treatment options for neonatal hyperbilirubinemia using the hUGT1*1 humanized mice and Ugt1a-deficient Gunn rats. Treatment of hUGT1*1 mice with UDCA or OCA at postnatal days 10-14 effectively decreased bilirubin in plasma (by 82% and 62%) and brain (by 72% and 69%), respectively. Mechanistically, our findings indicate that these effects are mediated through induction of protein levels of hUGT1A1 in the intestine, but not in liver. We further demonstrate that in Ugt1a-deficient Gunn rats, UDCA but not OCA significantly decreases plasma bilirubin, indicating that at least some of the hypobilirubinemic effects of UDCA are independent of UGT1A1. Finally, using the synthetic, non-bile acid, FXR-agonist GW4064, we show that some of these effects are mediated through direct or indirect activation of FXR. Together, our study shows that therapeutic bile acids UDCA and OCA effectively reduce both plasma and brain bilirubin, highlighting their potential in the treatment of neonatal hyperbilirubinemia.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Hiperbilirrubinemia Neonatal/tratamento farmacológico , Ácido Ursodesoxicólico/uso terapêutico , Animais , Ácidos e Sais Biliares/uso terapêutico , Bilirrubina/sangue , Ácido Quenodesoxicólico/uso terapêutico , Hiperbilirrubinemia Neonatal/sangue , Íleo/efeitos dos fármacos , Íleo/metabolismo , Isoxazóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Ratos Gunn , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Resultado do Tratamento
2.
Sci Rep ; 10(1): 4411, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157102

RESUMO

Although phototherapy (PT) is a standard treatment for neonatal jaundice, no validated clinical methods for determination of bilirubin phototherapy products are available. Thus, the aim of our study was to establish a such method for clinical use. To achieve this aim, a LC-MS/MS assay for simultaneous determination of Z-lumirubin (LR) and unconjugated bilirubin (UCB) was conducted. LR was purified after irradiation of UCB at 460 nm. The assay was tested on human sera from PT-treated neonates. Samples were separated on a HPLC system with a triple quadrupole mass spectrometer detector. The instrument response was linear up to 5.8 and 23.4 mg/dL for LR and UCB, respectively, with submicromolar limits of detection and validity parameters relevant for use in clinical medicine. Exposure of newborns to PT raised serum LR concentrations three-fold (p < 0.01), but the absolute concentrations were low (0.37 ± 0.16 mg/dL), despite a dramatic decrease of serum UCB concentrations (13.6 ± 2.2 vs. 10.3 ± 3.3 mg/dL, p < 0.01). A LC-MS/MS method for the simultaneous determination of LR and UCB in human serum was established and validated for clinical use. This method should help to monitor neonates on PT, as well as to improve our understanding of both the kinetics and biology of bilirubin phototherapy products.


Assuntos
Bilirrubina/análogos & derivados , Icterícia Neonatal/terapia , Fototerapia/métodos , Bilirrubina/sangue , Bilirrubina/química , Cromatografia Líquida , Humanos , Recém-Nascido , Icterícia Neonatal/sangue , Estrutura Molecular , Soro/química , Espectrometria de Massas em Tandem
3.
Front Pharmacol ; 11: 636533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569010

RESUMO

Ectopic lipid accumulation in skeletal muscle and liver drives the pathogenesis of diabetes mellitus type 2 (DMT2). Mild hyperbilirubinaemia has been repeatedly suggested to play a role in the prevention of DMT2 and is known for its capacity to shape an improved lipid phenotype in humans and in animals. To date, the effect of bilirubin on lipid accumulation in tissues that are prone to ectopic lipid deposition is unclear. Therefore, we analyzed the effect of bilirubin on lipid accumulation in skeletal muscle and liver cell lines. C2C12 skeletal mouse muscle and HepG2 human liver cells were treated with physiological concentrations of free fatty acids (FFA) (0.5 mM and 1 mM) and unconjugated bilirubin (UCB) (17.1 and 55 µM). The intracellular presence of UCB upon exogenous UCB administration was confirmed by HPLC and the lipid accumulation was assessed by using Nile red. Exposure of both cell lines to UCB significantly reduced lipid accumulation by up to 23% (p ≤ 0.001) in HepG2 and by up to 17% (p ≤ 0.01) in C2C12 cells at 0.5 and 5 h under hypoglycaemic conditions. Simultaneously, UCB slightly increased FFA uptake in HepG2 cells after 0.5 and 5 h and in C2C12 cells after 12 h as confirmed by gas chromatographic analyses of the remaining FFA content in the incubation media. The effects of UCB on lipid accumulation and uptake were abolished in the presence of higher glucose concentrations. Monitoring the uptake of a radiolabeled glucose analogue [18F]FDG: (2-deoxy-2-[18F]fluoro-D-glucose) into both cell types further indicated higher glucose consumption in the presence of UCB. In conclusion, our findings show that UCB considerably decreases lipid accumulation in skeletal muscle and liver cells within a short incubation time of max. 5 h which suggests that mildly elevated bilirubin levels could lower ectopic lipid deposition, a major key element in the pathogenesis of DMT2.

4.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075981

RESUMO

Decreased inflammatory status has been reported in subjects with mild unconjugated hyperbilirubinemia. However, mechanisms of the anti-inflammatory actions of bilirubin (BR) are not fully understood. The aim of this study is to assess the role of BR in systemic inflammation using hyperbilirubinemic Gunn rats as well as their normobilirubinemic littermates and further in primary hepatocytes. The rats were treated with lipopolysaccharide (LPS, 6 mg/kg intraperitoneally) for 12 h, their blood and liver were collected for analyses of inflammatory and hepatic injury markers. Primary hepatocytes were treated with BR and TNF-α. LPS-treated Gunn rats had a significantly decreased inflammatory response, as evidenced by the anti-inflammatory profile of white blood cell subsets, and lower hepatic and systemic expressions of IL-6, TNF-α, IL-1ß, and IL-10. Hepatic mRNA expression of LPS-binding protein was upregulated in Gunn rats before and after LPS treatment. In addition, liver injury markers were lower in Gunn rats as compared to in LPS-treated controls. The exposure of primary hepatocytes to TNF-α with BR led to a milder decrease in phosphorylation of the NF-κB p65 subunit compared to in cells without BR. In conclusion, hyperbilirubinemia in Gunn rats is associated with an attenuated systemic inflammatory response and decreased liver damage upon exposure to LPS.


Assuntos
Hiperbilirrubinemia/complicações , Inflamação/complicações , Animais , Apoptose/efeitos dos fármacos , Bilirrubina/farmacologia , Biomarcadores/sangue , Células Cultivadas , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Feminino , Hepatócitos/metabolismo , Hiperbilirrubinemia/sangue , Leucócitos/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Gunn , Transdução de Sinais
5.
Oxid Med Cell Longev ; 2018: 3845027, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327713

RESUMO

Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.


Assuntos
Encéfalo/metabolismo , Gangliosídeos/metabolismo , Heme Oxigenase-1/metabolismo , Fígado/metabolismo , Estresse Oxidativo/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
6.
Neuro Endocrinol Lett ; 36 Suppl 1: 5-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26757108

RESUMO

OBJECTIVES: 17α-Ethinylestradiol (EE2) is an endocrine disruptor that is an ingredient of oral contraceptives. Here, EE2 metabolism catalyzed by cytochromes P450 (CYP) was studied. Two model organisms, rat and ligninolytic fungus Pleurotus ostreatus, were used. METHODS: To resolve the role of rat and/or fungal CYPs in EE2 oxidation, microsomes were incubated with EE2 and NADPH or cumene hydroperoxide. Using Supersomes™, we examined which of rat CYPs oxidize EE2. RESULTS: EE2 is effectively degraded by P. ostreatus in vivo. In vitro, EE2 is metabolized by CYPs by the NADPH-dependent and organic hydroperoxide-dependent mechanisms. Rat hepatic microsomes metabolize EE2 in the presence of NADPH to three products; two of them are hydroxylated EE2 derivatives. Using rat Supersomes™ we found that EE2 is hydroxylated by several rat CYPs, among them CYP2C6 and 2C11 are most efficient in 2-hydroxy-EE2 formation, while CYP2A and 3A catalyze EE2 hydroxylation to the second product. On the contrary, the products of the NADPH-dependent hydroxylating reactions were not detected in Pleurotus ostreatus. During the reaction of EE2 in microsomes isolated from rat and P. ostreatus in the presence of the alternate oxidant, cumene hydroperoxide, another metabolite, different from the above mentioned products, is generated. Rat CYP1A1 is the most efficient enzyme catalyzing formation of this EE2 product. CONCLUSION: The results suggest that CYPs play a role in EE2 metabolism in rat and P. ostreatus. To our knowledge this is the first finding describing ligninolythic fungal metabolism of EE2 by CYP in the presence of cumene hydroperoxide.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Etinilestradiol/metabolismo , Microssomos Hepáticos/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450 , Hidroxilação , Masculino , Microssomos Hepáticos/enzimologia , Oxirredução , Pleurotus , Ratos , Ratos Wistar , Esteroide 16-alfa-Hidroxilase/metabolismo , Esteroide 21-Hidroxilase/metabolismo , Esteroide Hidroxilases/metabolismo
7.
Environ Toxicol Pharmacol ; 38(3): 852-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25461545

RESUMO

17α-Ethinylestradiol (EE2) is an endocrine disruptor (ED) used as an ingredient of oral contraceptives. Rat hepatic microsomes metabolize EE2 to three products; two of them are hydroxylated EE2 derivatives. Of the hydroxylation reactions, 2-hydroxylation, is the major reaction. Cytochrome P450 (CYP) plays a major role in EE2 hydroxylation. To resolve which rat CYPs are responsible for EE2 oxidation, three approaches were used: induction of specific CYPs, selective inhibition of CYPs, and recombinant rat CYPs. The results demonstrate that EE2 is hydroxylated by several rat CYPs, among them CYP2C6 and 2C11 are most efficient in 2-hydroxy-EE2 formation, while CYP2A and 3A catalyze EE2 hydroxylation to the second product. EE2 is also an inhibitor of CYP2C- and CYP3A-catalyzed hydroxylation of endogenous EDs progesterone and testosterone. EE2 acts as a reversible inhibitor of CYP3A-mediated progesterone 6ß-hydroxylation and inactivates CYP3A- and CYP2C-catalyzed testosterone 6ß-hydroxylation and progesterone 21- or 16α-hydroxylation, respectively, in a mechanism-based manner.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Etinilestradiol/metabolismo , Microssomos Hepáticos/metabolismo , Animais , Hidroxilação , Masculino , Progesterona/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...