Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mult Scler Relat Disord ; 58: 103520, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35038645

RESUMO

BACKGROUND: Melatonin has been related to the pathophysiology of multiple sclerosis (MS), and its anti-inflammatory and immunomodulatory properties have been proved in numerous neurodegenerative diseases. This study aimed to find out whether a melatonin supplement in MS is able to act as a benefit to its clinical status, i.e. oxidative stress, inflammation and indirect biomarkers of bacterial dysbiosis, lipopolysaccharide (LPS) and LPS-binding protein (LBP), verifying its therapeutic potential and its possible clinical use in patients with MS. METHODS: The animal MS model, experimental autoimmune encephalomyelitis (EAE), was employed whereby 25 male Dark Agouti rats (5 animals per group) were divided into: a control group (not manipulated); a control+vehicle group; a control+melatonin group; an EAE group; an EAE+melatonin group. Melatonin was administered daily for 51 days, at a dose of 1 mg/kg body weight/i.p., once a day, five days a week. RESULTS: The results from the administration of melatonin demonstrated an improvement in clinical status, a diminution in oxidative stress and inflammation, as well as in bacterial dysbiosis. CONCLUSION: Melatonin could play an effective role against MS, either alone or as a therapy combined with traditional agents.


Assuntos
Encefalomielite Autoimune Experimental , Melatonina , Esclerose Múltipla , Animais , Biomarcadores/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Estresse Oxidativo , Ratos
2.
J Pineal Res ; 25(2): 94-100, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9755030

RESUMO

We have studied the effect of the administration of two doses of melatonin (melatonin 100 and melatonin 200 microg/kg bw) on diabetes and oxidative stress experimentally induced by the injection of streptozotocin (STZ) in female Wistar rats. STZ was injected as a single dose (60 mg/kg i.p. in buffered citrate solution, pH 4.0) and melatonin (melatonin 100, 100 microg/kg/day i.p.; melatonin 200, 200 microg/kg/day i.p.) beginning 3 days before diabetes induction and continuing until the end of the study (8 weeks). The parameters analysed to evaluate oxidative stress and the diabetic state were a) for oxidative stress, changes of lipoperoxides (i.e., malondialdehyde, MDA) in plasma and erythrocytes and the changes in reduced glutathione (GSH) in erythrocytes and b) for diabetes, changes in glycemia, lipids (triglycerides: TG; total cholesterol: TC; HDL-cholesterol, HDL-c), percentage of glycosylated hemoglobin (Hb%), and plasma fructosamine. The injection of STZ caused significant increases in the levels of glycemia, percentage of glycosylated hemoglobin, fructosamine, cholesterol, triglycerides, and lipoperoxides in plasma and erythrocytes, whereas it decreased the levels of HDL-c and the GSH content in erythrocytes. The melatonin 100 dose reduced significantly all these increases, except the percentage of glycosylated hemoglobin. With regard to the decreases of plasma HDL-c and GSH content in erythrocytes, this melatonin dose returned them to normal levels. The melatonin 200 dose produced similar changes, though the effects were especially noticeable in the decrease of glycemia (55% vs. diabetes), percentage of hemoglobin (P < 0.001 vs diabetes), and fructosamine (31% vs. diabetes). This dose also reversed the decreases of HDL-c and GSH in erythrocytes. Both doses of melatonin caused significant reduction of the percentage of glycosylated hemoglobin in those groups that were non-diabetic. These illustrate the protective effect of melatonin against oxidative stress and the severity of diabetes induced by STZ. In particular, this study confirms two facts: 1) the powerful antioxidant action of this pineal indole and 2) the importance of the severity of oxidative stress to maintain hyperglycemia and protein glycosylation, two pathogenetic cornerstones indicative of diabetic complications. Melatonin reduces remarkably the degree of lipoperoxidation, hyperglycemia, and protein glycosylation, which gives hope to a promising perspective of this product, together with other biological antioxidants, in the treatment of diabetic complications where oxidative stress, either in a high or in a low degree, is present.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Melatonina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Animais , Glicemia/análise , Colesterol/sangue , HDL-Colesterol/sangue , Feminino , Frutosamina/sangue , Glutationa/sangue , Hemoglobinas Glicadas/análise , Glicosúria , Peróxidos Lipídicos/sangue , Malondialdeído/sangue , Melatonina/farmacologia , Ratos , Ratos Wistar , Estreptozocina , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...