RESUMO
We have studied the effects of naringin (NAR), a flavonoid from citric fruits, on morphology, ultrastructure and function of the kidney in streptozotocin (STZ)-induced diabetic rats. Two groups of animals were used: (1) control rats and (2) STZ rats (60 mg STZ/kg b.w.). At 3 days after induction, one group of STZ-treated rats received 40 mg NAR/kg b.w. daily. NAR blocked completely alterations in the biochemical renal markers in STZ rats except the increase in serum urea that was partially avoided by the flavonoid. NAR ameliorated the kidney morphological lesions from STZ rats. STZ treatment induced round and smaller mitochondria, which was avoided by NAR. Citrate synthase, isocitrate and malate dehydrogenases, enzyme activities of the Krebs cycle, were decreased in STZ rats. NAR abolished this decrease in the latter proteins. NAR also prevented a decrease in the ATP synthase activity of the mitochondria from renal cortex by about 49% in STZ rats, returning the enzyme activity to control values. The nephroprotection caused by NAR is mediated through counteraction of oxidative stress in mitochondria of proximal tubules. NAR might be a therapeutic strategy to reduce the complication of diabetic nephropathy in type 1 diabetic patients.
Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Flavanonas , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavanonas/metabolismo , Rim , Estreptozocina/farmacologia , Mitocôndrias/metabolismoRESUMO
RESUMEN Introducción: Resultados de nuestro laboratorio sugieren que la disfunción mitocondrial en el corazón precede a la falla miocárdica asociada a la hiperglucemia sostenida. Objetivo: Estudiar los eventos tempranos que ocurren en las mitocondrias de corazón en un modelo de diabetes mellitus tipo 1. Materiales y métodos: Ratas Wistar macho fueron inyectadas con estreptozotocina (STZ; 60 mg/kg, ip) y sacrificadas 10 o 14 días posinyección. Se obtuvo la fracción mitocondrial de corazón. Resultados: El consumo de O2 en estado 3 en presencia de malato-glutamato (21%) o succinato (16%) y las actividades de los complejos I-III (27%), II-III (24%) y IV (22%) fueron menores en los animales diabéticos a los 14 días posinyección. Cuando los animales se sacrificaron al día 10, solo el consumo de O2 en estado 3 en presencia de sustratos del complejo I (23%) y su control respiratorio (30%) fueron menores en las ratas inyectadas con STZ, de acuerdo con una reducción en la actividad del complejo I-III (17%). Estos cambios se acompañaron de un aumento en las velocidades de producción de H2O2 (117%), NO (30%) y ONOO- (∼225%), en la expresión de mtNOS (29%) y en la [O2 -]ss (∼150%) y [NO]ss (∼30%), junto con una disminución de la actividad de la Mn-SOD (15%) y la [GSSG+GSH]mitocondrial (28%), sin cambios en la expresión de PGC-1α. Conclusión: La disfunción del complejo I y el aumento en la generación de H2O2, NO y ONOO- pueden considerarse señales subcelulares prodrómicas del deterioro de la función mitocondrial que precede a la disfunción cardíaca en la diabetes.
ABSTRACT Background: Previous results from our laboratory suggest that heart mitochondrial dysfunction precedes myocardial failure associated with sustained hyperglycemia. Purpose: The aim of this study was to analyze the early events that take place in heart mitochondria in a type 1 diabetes mellitus (DM) model. Methods: Male Wistar rats were injected with streptozotocin (STZ; 60 mg/kg, ip.) to induce DM. They were euthanized 10 or 14 days later and the heart mitochondrial fraction was obtained. Results: State 3 O2 consumption in the presence of malate-glutamate (21%) or succinate (16%), and complex I-III (27%), II-III (24%) and IV (22%) activities were lower in diabetic animals 14 days after STZ injection. When animals were euthanized at day 10, only state 3 O2 consumption sustained by complex I substrates (23%) and its corresponding respiratory control (30%) were lower in rats injected with STZ, in agreement with reduced complex I-III activity (17%). These changes were accompanied by increased H2O2 (117%), NO (30%) and ONOO- (~225%) production rates, mtNOS expression (29%) and O2 - (~150%) and NO (~30%) steady-state concentrations, together with a decrease in Mn-SOD activity (15%) and mitochondrial [GSSG+GSH] (28%), without changes in PGC-1α expression. Conclusion: Complex I dysfunction and increased H2O2, NO and ONOO- production rates can be considered subcellular prodromal signals of the mitochondrial damage that precedes myocardial dysfunction in diabetes.
RESUMO
In order to study the in vitro effect of flavan-3-ol (+)-catechin on the enzymatic activities of mitochondrial complex I and nitric oxide synthase (mtNOS), as well as the consequences on the membrane potential and H2O2 production rate, isolated mitochondria from rat heart were exposed to 3 nM to 100 µM (+)-catechin. NADH-Q1 reductase (complex I) and mtNOS activities were inhibited 25% and 50%, respectively, by the addition of 10 nM (+)-catechin to the reaction medium. Moreover, in the nM range, (+)-catechin decreased state 4 mitochondrial membrane potential by about 10 mV, but failed to change the membrane potential measured in the presence of ADP. (+)-Catechin (10 nM) inhibited not only complex I activity, but also the H2O2 production rate (35%) sustained by malate-glutamate, in accordance with the decrease observed in mitochondrial membrane potential. Considering (+)-catechin concentrations lower than 10 nM, linear and positive correlations were obtained between mitochondrial complex I activity and either NO (r2 = 0.973) or H2O2 production rates (r2 = 0.958), suggesting a functional association among these parameters. Altogether, the results indicate that (+)-catechin, at nM concentrations, inhibits mitochondrial complex I activity, leading to membrane potential decline and consequently to reduction in H2O2 and NO production rates. The decrease in mtNOS activity could also be a consequence of the direct action of (+)-catechin on the NOS structure, this effect being in accordance with the functional interaction between complex I and mtNOS, as previously reported.
Assuntos
Catequina/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Copper deficiency is an important disease of cattle that produces several clinical signs and lesions, due to alterations in copper-dependent enzymes. One of the organs affected by this deficiency is the heart (falling disease), but nevertheless, these cardiac lesions have not been extensively studied in bovines. The aim of this work was to propose a possible pathogenic mechanism for cardiac lesions in cattle affected by copper deficiency. Because of the possible existence of oxidative distress caused by low levels of copper-zinc-superoxide dismutase and cytochrome oxidase, ultrastructural and histological lesions have been evaluated in the heart of bovines in which a Cu deficiency had been induced using high molybdenum and sulfur levels in the diet. Our results indicated that copper deficiency produces significant damage in myocardium with high levels of lipid oxidation and a significant reduction in copper-zinc-superoxide dismutase activity leading to an oxidative distress situation. However, cytochrome oxidase activity was not significantly reduced. Histological observation revealed a significant increase in the amount of connective tissue, enlarged basement membranes of myocytes, and numerous Anichkov cells, in the hearts of deficient animals. Ultrastructural observation showed a significant enhancement in the mitochondrial volume density, with presence of lesions such as swelling and cristae disruption. We conclude that copper deficiency in bovines causes morphological lesions in the heart due to an oxidative damage produced by copper-dependent enzyme alterations.
Assuntos
Cobre/deficiência , Coração/anatomia & histologia , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Bovinos , Cobre/metabolismo , Masculino , Miocárdio/ultraestrutura , Estresse OxidativoRESUMO
Background: Epigenetic modifications are key factors modulating the expression of genes involved in the synthesis of phytochemicals. The knowledge of plant epigenetic and genetic variations can contribute to enhance the production of bioactive compounds. These issues have been little explored thus far in Rorippa nasturtium var. aquaticum L. (watercress), an edible and medicinal plant. The aim of the current study was to determine and compare the phenolic composition and epigenetic and genetic variations between wild and cultivated watercress. Results: Significant differences were found in the quantitative phenolic composition between wild and cultivated watercress. The eight primer combinations used in the methylation-sensitive amplification polymorphism (MSAP) method revealed different epigenetic status for each watercress type, the cultivated one being the most epigenetically variable. The genetic variability revealed by the EcoRI/MspI amplification profile and also by eight inter-simple sequence repeat (ISSR) primers was different between the two types of watercress. The results of the Mantel test showed that the correlation between genetic and epigenetic variations has diminished in the cultivated type. Cluster analyses showed that the epigenetic and genetic characterizations clearly discriminated between wild and cultivated watercress. Conclusions: Relevant chemical, epigenetic, and genetic differences have emerged between wild and cultivated watercress. These differences can contribute to fingerprint and develop quality control tools for the integral and safety use and the commercialization of watercress. The richness of epialleles could support the development of tools to manipulate the watercress epigenome to develop high bioproductproducing cultivars
Assuntos
Nasturtium/genética , Nasturtium/química , Plantas Comestíveis , Variação Genética , Análise por Conglomerados , Repetições de Microssatélites , Metilação de DNA , Brassicaceae/genética , Brassicaceae/química , Citosina/metabolismo , Compostos Fenólicos/análise , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Epigenômica , Compostos FitoquímicosRESUMO
This study, in an experimental model of type I Diabetes Mellitus in rats, deals with the mitochondrial production rates and steady-state concentrations of H2O2 and NO, and ATP levels as part of a network of signaling molecules involved in heart mitochondrial biogenesis. Sustained hyperglycemia leads to a cardiac compromise against a work overload, in the absence of changes in resting cardiac performance and of heart hypertrophy. Diabetes was induced in male Wistar rats by a single dose of Streptozotocin (STZ, 60mg × kg-1, ip.). After 28 days of STZ-injection, rats were sacrificed and hearts were isolated. The mitochondrial mass (mg mitochondrial protein × g heart-1), determined through cytochrome oxidase activity ratio, was 47% higher in heart from diabetic than from control animals. Stereological analysis of cardiac tissue microphotographs showed an increase in the cytosolic volume occupied by mitochondria (30%) and in the number of mitochondria per unit area (52%), and a decrease in the mean area of each mitochondrion (23%) in diabetic respect to control rats. Additionally, an enhancement (76%) in PGC-1α expression was observed in cardiac tissue of diabetic animals. Moreover, heart mitochondrial H2O2 (127%) and NO (23%) productions and mtNOS expression (132%) were higher, while mitochondrial ATP production rate was lower (~ 40%), concomitantly with a partial-mitochondrial depolarization, in diabetic than in control rats. Changes in mitochondrial H2O2 and NO steady-state concentrations and an imbalance between cellular energy demand and mitochondrial energy transduction could be involved in the signaling pathways that lead to the novo synthesis of mitochondria. However, this compensatory mechanism triggered to restore the mitochondrial and tissue normal activities, did not lead to competent mitochondria capable of supplying the energetic demands in diabetic pathological conditions.
Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Expressão Gênica , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Biogênese de Organelas , Tamanho das Organelas , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , EstreptozocinaRESUMO
Transition from compensated to decompensated left ventricular hypertrophy (LVH) is accompanied by functional and structural changes. Here, the aim was to evaluate dystrophin expression in murine models and human subjects with LVH by transverse aortic constriction (TAC) and aortic stenosis (AS), respectively. We determined whether doxycycline (Doxy) prevented dystrophin expression and myocardial stiffness in mice. Additionally, ventricular function recovery was evaluated in patients 1 year after surgery. Mice were subjected to TAC and monitored for 3 weeks. A second group received Doxy treatment after TAC. Patients with AS were stratified by normal left ventricular end-diastolic wall stress (LVEDWS) and high LVEDWS, and groups were compared. In mice, LVH decreased inotropism and increased myocardial stiffness associated with a dystrophin breakdown and a decreased mitochondrial O2 uptake (MitoMVO2). These alterations were attenuated by Doxy. Patients with high LVEDWS showed similar results to those observed in mice. A correlation between dystrophin and myocardial stiffness was observed in both mice and humans. Systolic function at 1 year post-surgery was only recovered in the normal-LVEDWS group. In summary, mice and humans present diastolic dysfunction associated with dystrophin degradation. The recovery of ventricular function was observed only in patients with normal LVEDWS and without dystrophin degradation. In mice, Doxy improved MitoMVO2. Based on our results it is concluded that the LVH with high LVEDWS is associated to a degradation of dystrophin and increase of myocardial stiffness. At least in a murine model these alterations were attenuated after the administration of a matrix metalloprotease inhibitor.
Assuntos
Distrofina/deficiência , Hipertrofia Ventricular Esquerda/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Proteólise , Animais , Modelos Animais de Doenças , Doxiciclina/efeitos adversos , Doxiciclina/farmacologia , Humanos , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Miocárdio/patologiaRESUMO
Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 µm) including mimetite-vanadite (Pb5(AsO4)3Cl, Pb5(AsO4, VO4)3Cl)-like, lead arseniate (Pb3(AsO4)2)-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF2) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg-1, respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg-1), and trigger level criterion for arsenic soil remediation (20 mg kg-1); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L-1 and 0.12-0.650 mg L-1, respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data.
Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Flúor/análise , Poluentes do Solo/análise , Solo/química , Humanos , México , Fatores de RiscoRESUMO
Diabetes is a chronic disease associated to a cardiac contractile dysfunction that is not attributable to underlying coronary artery disease or hypertension, and could be consequence of a progressive deterioration of mitochondrial function. We hypothesized that impaired mitochondrial function precedes Diabetic Cardiomyopathy. Thus, the aim of this work was to study the cardiac performance and heart mitochondrial function of diabetic rats, using an experimental model of type I Diabetes. Rats were sacrificed after 28days of Streptozotocin injection (STZ, 60mgkg-1, ip.). Heart O2 consumption was declined, mainly due to the impairment of mitochondrial O2 uptake. The mitochondrial dysfunction observed in diabetic animals included the reduction of state 3 respiration (22%), the decline of ADP/O ratio (â¼15%) and the decrease of the respiratory complexes activities (22-26%). An enhancement in mitochondrial H2O2 (127%) and NO (23%) production rates and in tyrosine nitration (58%) were observed in heart of diabetic rats, with a decrease in Mn-SOD activity (â¼50%). Moreover, a decrease in contractile response (38%), inotropic (37%) and lusitropic (58%) reserves were observed in diabetic rats only after a ß-adrenergic stimulus. Therefore, in conditions of sustained hyperglycemia, heart mitochondrial O2 consumption and oxidative phosphorylation efficiency are decreased, and H2O2 and NO productions are increased, leading to a cardiac compromise against a work overload. This mitochondrial impairment was detected in the absence of heart hypertrophy and of resting cardiac performance changes, suggesting that mitochondrial dysfunction could precede the onset of diabetic cardiac failure, being H2O2, NO and ATP the molecules probably involved in mitochondrion-cytosol signalling.
Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Mitocôndrias Cardíacas/patologia , Trifosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , RatosRESUMO
AIM: We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec). Mitochondrial respiration, SERCA2a, phospholamban (PLB), and phospholamban phosphorylation (p-PLB) Thr17 expression (Western blot) were also evaluated. RESULTS: At 30 min of reperfusion, Trx1 improved contractile state (LVDP: Trx1: 57.4 ± 4.9 vs. Wt: 27.1 ± 6.3 and DN-Trx1: 29.2 ± 7.1, p < 0.05); decreased myocardial stiffness (LVEDP: Wt: 24.5 ± 4.8 vs. Trx1: 11.8 ± 2.9, p < 0.05); and improved the isovolumic relaxation (t63: Wt: 63.3 ± 3.2 vs. Trx1: 51.4 ± 1.9, p < 0.05). DN-Trx1 mice aggravated the myocardial stiffness and isovolumic relaxation. Only the expression of p-PLB Thr17 increased at 1.5 min R in Wt and DN-Trx1 groups. At 30 min of reperfusion, state 3 mitochondrial O2 consumption was impaired by 13% in Wt and by 33% in DN-Trx1. ADP/O ratios for Wt and DN-Trx1 decrease by 25% and 28%, respectively; whereas the Trx1 does not change after ischemia and reperfusion (I/R). Interestingly, baseline values of complex I activity were increased in Trx1 mice; they were 24% and 47% higher than in Wt and DN-Trx1 mice, respectively (p < 0.01). INNOVATION AND CONCLUSION: These results strongly suggest that Trx1 ameliorates the myocardial effects of I/R by improving the free radical-mediated damage in cardiac and mitochondrial function, opening the possibility of new therapeutic strategies in coronary artery disease. Antioxid. Redox Signal. 25, 78-88.
Assuntos
Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio Atordoado/metabolismo , Tiorredoxinas/metabolismo , Disfunção Ventricular/metabolismo , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio Atordoado/genética , Consumo de Oxigênio , Tiorredoxinas/genética , Disfunção Ventricular/genéticaRESUMO
Copper (Cu) deficiency increases occurrence of certain infectious diseases in animals, including infectious keratoconjunctivitis in bovines, a bacterial ocular inflammation caused by Moraxella bovis. Neutrophil leukocytes constitute the first phagocytic cells to arrive at infection sites for bacterial neutralization. The objective of this work was to evaluate whether the functionality of neutrophils against M. bovis is impaired in experimentally induced Cu deficiency in bovines using high molybdenum and sulfur levels in the diet. The Cu tissue values and the periocular achromotrichia observed in +Mo animals showed that the clinic phase of Cu deficiency was reached in this group. Instead, +Cu animals have not evidenced clinical signs or biochemical parameters of hypocuprosis. On the basis of our observations, we concluded that Cu deficiency has no effect on phagocytic and bactericidal activities of neutrophils against M. bovis. However, superoxide dismutase activity and peroxide hydrogen generation were significantly different between groups. Therefore, additional research to explain these results is merited to fully characterize the consequences of Cu status on the risk for infections under field conditions.
Assuntos
Antibacterianos/farmacologia , Cobre/deficiência , Cobre/metabolismo , Peróxido de Hidrogênio/farmacologia , Moraxella bovis/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Antibacterianos/análise , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Peróxido de Hidrogênio/análise , Neutrófilos/microbiologia , Fagocitose/efeitos dos fármacosRESUMO
Introducción: La disfunción ventricular posisquémica (miocardio atontado) involucra un aumento del estrés oxidativo. En este sentido, la célula cuenta con mecanismos de defensa, como la tiorredoxina-1, un antioxidante que protege al miocardio de la lesión por isquemia/reperfusión, reduciendo el tamaño del infarto. Objetivo: Evaluar el comportamiento de la función ventricular sistólica y diastólica, particularmente estudiando la rigidez miocárdica y la relajación isovolúmica en el miocardio atontado en diferentes ratones transgénicos. Material y métodos: Se utilizaron corazones de ratones que sobreexpresan tiorredoxina-1 y de ratones transgénicos que sobreexpresan tiorredoxina-1 mutada en su sitio activo (dominante negativo), comparados con los de ratones no transgénicos, los cuales fueron sometidos a 15 minutos de isquemia global y 30 minutos de reperfusión utilizando la técnica de Langendorff. Se evaluó la función ventricular sistólica y diastólica y se calculó el t63 y el t93 como índice de relajación isovolúmica. Resultados: Las mediciones a los 30 minutos de reperfusión mostraron una mejoría significativa del estado contráctil en los ratones tiorredoxina-1 (57,4 ± 4,9 mm Hg; p ≤ 0,05 vs. no transgénicos) y también en la rigidez (11,8 ± 2,9 mm Hg; p ≤ 0,05 vs. no transgénicos). Por otra parte, en los ratones dominantes negativos se observó un aumento de la rigidez (37,7 ± 5,5 mm Hg; p ≤ 0,05 vs. no transgénicos) y un enlentecimiento de la relajación a los 30 minutos de la reperfusión (78,2 ± 9,8 mseg; p ≤ 0,05 vs. no transgénicos). Conclusión: Este trabajo evidencia el rol protector de la tiorredoxina-1 en el miocardio atontado y su importancia fisiopatológica en ratones que sobreexpresan este antioxidante.
Background: Postischemic ventricular dysfunction (myocardial stunning) involves increased oxidative stress. In this sense, the cell has defense mechanisms, as thioredoxin-1, an antioxidant that protects the myocardium from ischemia/reperfusion injury, reducing infarct size. Objective: The aim of this study was to evaluate systolic and diastolic ventricular function, specifically analyzing myocardial stiffness and isovolumic relaxation, during myocardial stunning in different transgenic mice. Methods: Hearts from mice overexpressing thioredoxin-1 and transgenic mice overexpressing thioredoxin-1 with gene mutation in its active site (dominant negative) were compared with hearts from non-transgenic mice after 15-minute global ischemia and 30-minute reperfusion using the Langendorff technique. Systolic and diastolic ventricular function was evaluated and t63 and t93 were calculated as ventricular relaxation index. Results: At 30-minute reperfusion, thioredoxin-1 mice showed a significantly improved contractile state (57.4±4.9 mmHg; p≤0.05 vs. non-transgenic mice) and stiffness (11.8±2.9 mmHg; p≤0.05 vs. non-transgenic mice). Conversely, at the same reperfusion time, dominant negative mice exhibited increased stiffness (37.7±5.5 mmHg; p≤0.05 vs. non-transgenic mice) and slower relaxation (78.2±9.8 ms; p≤0.05 vs. non-transgenic mice). Conclusion: This study reveals the protective role of thioredoxin-1 on myocardial stunning and its pathophysiological importance in mice overexpressing this antioxidant.
RESUMO
BACKGROUND: Fruits of wild species of the genus Physalis are consumed as food and calyces and leaves are used in traditional medicine. The phenolic composition of the species of this genus have been scarcely studied. To contribute to a better knowledge for the use of all the potential of these wild species of plants, leaves, fruits, and calyces of five wild species of the genus were analyzed for their phenolic composition and antioxidant properties. RESULTS: Important tissue- and species-dependent variations were found. Calyces of Physalis subulata showed the highest contents of phenolics (176.58 mg of gallic acid equivalents/g dry tissue), flavonoids (39.63 mg/g dry tissue), and phenolic acids (50.57 mg of quercitrin equivalents/g dry tissue), and its leaves displayed the highest total antioxidant capacity (3.59 mg of ascorbic acid equivalents/mL) and one of the highest reduction powers (0.54 µg of ascorbic acid equivalents/mL). A high performance liquid chromatography with photodiode array detection analysis revealed a total of 28 phenolic compounds in foliar tissues (mainly kaempferol-3-O-glycosides), 16 in fruits (mainly phenolic acids), and 16 in calyces (mainly kaempferol-3-O-glycosides); the profiles of these compounds in the three types of tissue were species-specific. CONCLUSIONS: The studied species of Physalis are important sources of phenolics with relevant antioxidant activity. The current results indicate that phenolic profiles are valuable specific chemical markers and can be relevant as food tracing and authenticity indicators for plant-based preparations involving species of Physalis.
RESUMO
Acute endotoxemia (LPS, 10 mg/kg ip, Sprague Dawley rats, 45 days old, 180 g) decreased the O2 consumption of rat heart (1 mm³ tissue cubes) by 33% (from 4.69 to 3.11 µmol O2/min. g tissue). Mitochondrial O2 consumption and complex I activity were also decreased by 27% and 29%, respectively. Impaired respiration was associated to decreased ATP synthesis (from 417 to 168 nmol/min. mg protein) and ATP content (from 5.40 to 4.18 nmol ATP/mg protein), without affecting mitochondrial membrane potential. This scenario is accompanied by an increased production of O2·â» and H2O2 due to complex I inhibition. The increased NO production, as shown by 38% increased mtNOS biochemical activity and 31% increased mtNOS functional activity, is expected to fuel an increased ONOOâ» generation that is considered relevant in terms of the biochemical mechanism. Heart mitochondrial bioenergetic dysfunction with decreased O2 uptake, ATP production and contents may indicate that preservation of mitochondrial function will prevent heart failure in endotoxemia.
Assuntos
Trifosfato de Adenosina/biossíntese , Complexo I de Transporte de Elétrons/metabolismo , Endotoxemia/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Consumo de Oxigênio , Animais , Transporte de Elétrons , Endotoxemia/complicações , Endotoxemia/patologia , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/patologia , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Hemorrhage (H) is associated with a left ventricular (LV) dysfunction. However, the diastolic function has not been studied in detail. The main goal was to assess the diastolic function both during and 120 min after bleeding, in the absence and in the presence of L-NAME. Also, the changes in mRNA and protein expression of nitric oxide synthase (NOS) isoforms were determined. New Zealand rabbits were divided into three groups: Sham group, H group (hemorrhage 20% blood volume), and H L-NAME group (hemorrhage treated with L-NAME). We evaluated systolic and diastolic ventricular functions in vivo and in vitro (Langendorff technique). Hemodynamic parameters and LV function were measured before, during, and at 120 min after bleeding. We analyzed the isovolumic relaxation using t ½ in vivo (closed chest). After that, hearts were excised and perfused in vitro to measure myocardial stiffness. Samples were frozen to measure NOS mRNA and protein expression. The t½ increased during bleeding and returned to basal values 120 min after bleeding. L-NAME blunted this effect. Data from the H group revealed a shift to the left in the LV end diastolic pressure-volume curve at 120 min after bleeding, which was blocked by L-NAME. iNOS and nNOS protein expression and mRNA levels increased at 120 min after the hemorrhage. Acute hemorrhage induces early and transient isovolumic relaxation impairment and an increase in myocardial stiffness 120 min after bleeding. L-NAME blunted the LV dysfunction, suggesting that NO modulates ventricular function through iNOS and nNOS isoforms.
Assuntos
Diástole , Choque Hemorrágico/fisiopatologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Diástole/efeitos dos fármacos , Diástole/fisiologia , Coração/fisiopatologia , Hemorragia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Óxidos de Nitrogênio , Coelhos , Choque Hemorrágico/complicações , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/etiologiaRESUMO
Isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 5-30 min) in a model of stunned myocardium. I/R decreased left-ventricle O(2) consumption (46%) and malate-glutamate-supported mitochondrial state 3 respiration (32%). Activity of complex I was 28% lower after I/R. The pattern observed for the decline in complex I activity was also observed for the reduction in mitochondrial nitric oxide synthase (mtNOS) biochemical (28%) and functional (50%) activities, in accordance with the reported physical and functional interactions between complex I and mtNOS. Malate-glutamate-supported state 4 H(2)O(2) production was increased by 78% after I/R. Rabbit heart Mn-SOD concentration in the mitochondrial matrix (7.4±0.7 µM) was not modified by I/R. Mitochondrial phospholipid oxidation products were increased by 42%, whereas protein oxidation was only slightly increased. I/R produced a marked (70%) enhancement in tyrosine nitration of the mitochondrial proteins. Adenosine attenuated postischemic ventricular dysfunction and protected the heart from the declines in O(2) consumption and in complex I and mtNOS activities and from the enhancement of mitochondrial phospholipid oxidation. Rabbit myocardial stunning is associated with a condition of dysfunctional mitochondria named "complex I syndrome." The beneficial effect of adenosine could be attributed to a better regulation of intracellular cardiomyocyte Ca(2+) concentration.
Assuntos
Adenosina/administração & dosagem , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio Atordoado/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ventrículos do Coração/patologia , Peroxidação de Lipídeos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Miocárdio Atordoado/tratamento farmacológico , Miocárdio Atordoado/patologia , Óxido Nítrico Sintase/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Coelhos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Superóxido Dismutase/metabolismoRESUMO
Recent information has revealed new roles in the angiogenic processes linked to the rennin-angiotensin system. To date few studies have been done on the association between RAS genes and cancer and the majority focus mainly on angiotensin I-converting enzyme (ACE). For breast cancer there are three reports that include the angiotensin II receptor, subtype 1 (AGTR1), only one for angiotensinogen (AGT) and none for renin gene (REN). In the present study we investigate whether REN (Bgll), AGT (M235T), ACE (A245T, Indel), and AGTR1 (A1166C) are associated with breast cancer. Polymorphisms were analysed by PCR and RFPLs or sequence specific assay in three groups: breast cancer, benign breast disease (BBD) and general population. REN polymorphism shows that homozygous for A allele have an increased risk for BBD. Differences in M235T genotype frequencies were significant with less heterozygous in breast cancer. With different risk values ACE indel was associated with BBD and breast cancer. Association of AGTR1 was observed only in the breast cancer group, where C allele carriers present a reduced risk. Results of this work supports previous observations on the possible involvement of this system in breast cancer but it also suggests a role in benign disease.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mama/citologia , Mama/patologia , Polimorfismo Genético , Sistema Renina-Angiotensina/genética , Adulto , Distribuição por Idade , Idoso , Alelos , Mama/metabolismo , Feminino , Frequência do Gene/genética , Haplótipos/genética , Humanos , Pessoa de Meia-IdadeRESUMO
The activation of matrix metalloproteinases (MMPs) contributes to myocardial injury at the onset of reperfusion; however, their role in ischaemic postconditioning is unknown. The aim of the present study was to examine the effects of ischaemic postconditioning on MMP activity in isolated rabbit hearts. The isolated rabbit hearts were subjected to 30 min of global ischaemia followed by 180 min of reperfusion (I/R group; n = 8). In the ischaemic postconditioning group (n = 8), a postconditioning protocol was performed (2 cycles of 30 s reperfusion-ischaemia). In other experiments, we added doxycycline, an MMP inhibitor, at 25 (n = 7) or 50 micromol l(1) (n = 8) during the first 2 min of reperfusion. Coronary effluent and left ventricular tissue were collected during pre-ischaemic conditions and at different times during the reperfusion period to measure MMP-2 activity and cardiac protein nitration. We evaluated ventricular function and infarct size. In the I/R group, infarct size was 32.1 +/- 5.2%; Postcon reduced infarct size to 9.5 +/- 3.8% (P < 0.05) and inhibited MMP-2 activity during reperfusion. The administration of doxycycline at 50 micromol l(1) inhibited MMP-2 activity and cardiac protein nitration and reduced the infarct size to 9.7 +/- 2.8% (P < 0.05). A lower dose of doxycycline (25 micromol l(1)) failed to inhibit MMP-2 activity and did not modify the infarct size. Our results strongly suggest that ischaemic postconditioning may exert part of its cardioprotective effects through the inhibition of MMP-2 activity.
Assuntos
Ventrículos do Coração/fisiopatologia , Metaloproteinase 2 da Matriz/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Circulação Coronária , Ativação Enzimática , Traumatismo por Reperfusão Miocárdica/complicações , Coelhos , Disfunção Ventricular Esquerda/etiologiaRESUMO
OBJECTIVE: Rehabilitation strategies have been developed to improve functional state in stroke patients. The main objective of this study was to evaluate the effectiveness of the early rehabilitation at hospital and its continuity at home provided by nurses, on the functional recovery of basic and social activities in stroke patients compared with conventional care. DESIGN: A randomised clinical trial was carried out in three general hospitals of the Mexican Institute of Social Security (IMSS) in Mexico City between April 2003-May 2004. PARTICIPANTS: Stroke patients. METHODS: Two rehabilitation strategies provided by nurses for stroke patients were compared: physiotherapy plus caregiver education in rehabilitation (strategy 1, S1) vs. education alone (strategy 2, S2). The main outcome variables were the basic (Barthel index) and social (Frenchay activities index) activities of daily living, of each patient. Age, sex, morbidity, stroke symptoms, complications, neurological damage (Canadian Scale), cognitive state (mini-mental state examination questionnaire) and duration of hospitalisation were defined as the control variables. Patients were evaluated at baseline and months one, three and six thereafter. RESULTS: One hundred and ten patients with ischaemic stroke were enrolled and randomised; 59 were assigned to S1 and 51 to S2. Comparison of the outcome variables showed that patients improved significantly over time, but no differences were observed between groups. We observed no significant difference in strategy performance with regard to the basic and instrumental activities of daily living. RELEVANCE TO CLINICAL PRACTICE: Participants who received physiotherapy with additional caregiver education benefit no more than those whose caregivers received education alone. Those countries that do not have integral rehabilitation programmes for stroke patients should understand their importance and budget resources for them. Meanwhile, both caregiver education and nurses trained in specific care and physiotherapy are alternatives that benefit these patients.